Subscribe to RSS
DOI: 10.1055/s-0029-1217733
Efficient Synthesis of 5-Functionalised 2-Methoxypyridines and their Transformation to Bicyclic δ-Lactams, both Accessed Using Magnesium ‘Ate’ Complexes as Key Reagents
Publication History
Publication Date:
27 August 2009 (online)

Abstract
Simple and efficient synthesis of 5-functionalised 2-methoxypyridines from 5-bromo-2-methoxypyridine using [n-Bu3Mg]Li performed in noncryogenic conditions is described. Application of 5-functionalised 2-methoxypyridines in the synthesis of 1-substituted 3,6,9,9a-tetrahydroquinolizin-4-ones and 3,5,8,8a-tetrahydro-1H-quinolin-2-ones via allylation of the corresponding 5-functionalised N-allyl(or benzyl)pyridin-2-ones using [allyln-Bu2Mg]Li followed by ring-closing metathesis is presented.
Key words
magnesium ‘ate’ complexes - magnesiates - bromine-magnesium exchange - allylation - quinolizidin-4-ones - RCM
- 1
Yorimitsu H.Oshima K. The Chemistry of Organomagnesium Ate Complexes In The Chemistry of Organomagnesium CompoundsRappoport Z.Marek I. Wiley; Chichester: 2008. Chap. 15. p.681-716Reference Ris Wihthout Link - 2a
Stefan MC.Javier AE.Osaka I.McCullough RD. Macromolecules 2009, 42: 30Reference Ris Wihthout Link - 2b
Shinozuka T.Yamamoto Y.Hasegawa T.Saito K.Naito S. Tetrahedron Lett. 2008, 49: 1619Reference Ris Wihthout Link - 2c
Gallou F.Haenggi R.Hirt H.Marterer W.Schaefer F.Seeger-Weibel M. Tetrahedron Lett. 2008, 49: 5024Reference Ris Wihthout Link - 2d
Lau SYW.Hughes G.O’Shea PD.Davies IW. Org. Lett. 2007, 9: 2239Reference Ris Wihthout Link - 2e
Fleming FF.Gudipati S.Anh Viet V.Mycka RJ.Knochel P. Org. Lett. 2007, 9: 4507Reference Ris Wihthout Link - 2f
Dolman SJ.Gosselin F.O’Shea PD.Davies IW. Tetrahedron 2006, 62: 5092Reference Ris Wihthout Link - 2g
Kii S.Akao A.Iida T.Mase T.Yasuda N. Tetrahedron Lett. 2006, 47: 1877Reference Ris Wihthout Link - 2h
Buron F.Plé N.Turck A.Marsais F. Synlett 2006, 1586Reference Ris Wihthout Link - 2i
Thomas GL.Böhner C.Ladlow M.Spring DR. Tetrahedron 2005, 61: 12153Reference Ris Wihthout Link - 2j
Trost BM.Frederiksen MU.Papillon JP.Harrington PE.Shin S.Shireman BT. J. Am. Chem. Soc. 2005, 127: 3666Reference Ris Wihthout Link - 2k
Xu J.Jain N.Sui Z. Tetrahedron Lett. 2004, 45: 6399Reference Ris Wihthout Link - 2l
Therkelsen FD.Rottländer M.Thorup N.Pedersen EB. Org. Lett. 2004, 6: 1991Reference Ris Wihthout Link - 2m
Tsuji T.Nakamura T.Yorimitsu H.Shinokubo H.Oshima K. Tetrahedron 2004, 60: 973Reference Ris Wihthout Link - 2n
Ito S.Kubo T.Morita N.Matsui Y.Watanabe T.Ohta A.Fujimori K.Murafuji T.Sugihara Y.Tajiri A. Tetrahedron Lett. 2004, 45: 2891Reference Ris Wihthout Link - 2o
Shinokubo H.Oshima K. Eur. J. Org.Chem. 2004, 2081Reference Ris Wihthout Link - 2p
Dumouchel S.Mongin F.Trécourt F.Quéguiner G. Tetrahedron 2003, 59: 8629Reference Ris Wihthout Link - 2q
Fukuhara K.Takayama Y.Sato F. J. Am. Chem. Soc. 2003, 125: 6884Reference Ris Wihthout Link - 2r
Dumouchel S.Mongin F.Trécourt F.Quéguiner G. Tetrahedron Lett. 2003, 44: 3877Reference Ris Wihthout Link - 2s
Dumouchel S.Mongin F.Trécourt F.Quéguiner G. Tetrahedron Lett. 2003, 44: 2033Reference Ris Wihthout Link - 2t
Inoue A.Kondo J.Shinokubo H.Oshima K. Chem. Eur. J. 2002, 8: 1730Reference Ris Wihthout Link - 2u
Mase T.Houpis IN.Akao A.Dorziotis I.Emerson K.Hoang T.Iida T.Itoh T.Kamei K.Kato S.Kato Y.Kawasaki M.Lang F.Lee J.Lynch J.Maligres P.Molina A.Nemoto T.Okada S.Reamer R.Song JZ.Tschaen D.Wada T.Zewge D.Volante RP.Reider PJ.Tomimoto K. J. Org. Chem. 2001, 66: 6775Reference Ris Wihthout Link - 2v
Kondo J.Inoue A.Shinokubo H.Oshima K. Angew. Chem. Int. Ed. 2001, 40: 2085Reference Ris Wihthout Link - 2w
Inoue A.Kitagawa K.Shinokubo H.Oshima K. J. Org. Chem. 2001, 66: 4333Reference Ris Wihthout Link - 2x
Iida T.Wada T.Tomimoto K.Mase T. Tetrahedron Lett. 2001, 42: 4841Reference Ris Wihthout Link - 2y
Kitagawa K.Inoue A.Shinokubo H.Oshima K. Angew. Chem. Int. Ed. 2000, 39: 2481Reference Ris Wihthout Link - 3a
Sośnicki JG.Struk Ł. Synlett 2009, 1812Reference Ris Wihthout Link - 3b
Bentabed-Ababsa G.Blanco F.Derdour A.Mongin F.Trécourt F.Quéguiner G.Ballesterous R.Abarca B. J. Org. Chem. 2009, 74: 163Reference Ris Wihthout Link - 3c
Hawad H.Bayh O.Hoarau C.Trécourt F.Quéguiner G.Marsais F. Tetrahedron 2008, 64: 3236Reference Ris Wihthout Link - 3d
Mulvey RE.Mongin F.Uchiyama M.Kondo Y. Angew. Chem. Int. Ed. 2007, 46: 3802Reference Ris Wihthout Link - 3e
Bayh O.Awad H.Mongin F.Hoarau C.Bischoff L.Trécourt F.Quéguiner G.Marsais F.Blanco F.Abarca B.Ballesteros R. J. Org. Chem. 2005, 70: 5190Reference Ris Wihthout Link - 3f
Mongin F.Bucher A.Bazureau JP.Bayh O.Awad H.Trécourt F. Tetrahedron Lett. 2005, 46: 7989Reference Ris Wihthout Link - 3g
Awad H.Mongin F.Trécourt F.Quéguiner G.Marsais F.Blanco F.Abarca B.Ballesteros R. Tetrahedron 2005, 61: 4779Reference Ris Wihthout Link - 3h
Awad H.Mongin F.Trécourt F.Quéguiner G.Marsais F. Tetrahedron Lett. 2004, 45: 7873Reference Ris Wihthout Link - 3i
Awad H.Mongin F.Trécourt F.Quéguiner G.Marsais F.Blanco F.Abarca B.Ballesteros R. Tetrahedron Lett. 2004, 45: 6697Reference Ris Wihthout Link - 3j
Ide M.Nakata M. Bull. Chem. Soc. Jpn. 1999, 72: 2491Reference Ris Wihthout Link - 3k
Ide M.Yasuda M.Nakata M. Synlett 1998, 936Reference Ris Wihthout Link - 3l
Yasuda M.Ide M.Matsumoto Y.Nakata M. Bull. Chem. Soc. Jpn. 1998, 71: 1417Reference Ris Wihthout Link - 4a
Hatano M.Miyamoto T.Ishihara K. Curr. Org. Chem. 2007, 11: 127Reference Ris Wihthout Link - 4b
Hatano M.Matsumura T.Ishihara K. Org. Lett. 2005, 7: 573Reference Ris Wihthout Link - 4c
Faraks J.Richey HG. Organometallics 1990, 9: 1778Reference Ris Wihthout Link - 4d
Richery HG.DeStephano J. Tetrahedron Lett. 1985, 26: 275Reference Ris Wihthout Link - 4e
Ashby EC.Chao L.-C.Laemmle J.
J. Org. Chem. 1974, 39: 3258Reference Ris Wihthout Link - 4f
Wittig G.Meyer FJ.Lange G. Justus Liebigs Ann. Chem. 1951, 571: 167Reference Ris Wihthout Link - 5 See, for example:
Rubiralta M.Giralt E.Diez A. Piperidines. Structure, Preparation, Reactivity and Synthetic Application of Piperidines and its Derivatives Elsevier; Amsterdam: 1991.Reference Ris Wihthout Link - 6a
Sośnicki JG. Synlett 2003, 1673Reference Ris Wihthout Link - 6b
Sośnicki JG.Westerlich S. Tetrahedron Lett. 2002, 43: 1325Reference Ris Wihthout Link - 7a
Sośnicki JG. Tetrahedron 2009, 65: 1336Reference Ris Wihthout Link - 7b
Sośnicki JG. Tetrahedron Lett. 2009, 50: 178Reference Ris Wihthout Link - 7c
Sośnicki JG. Tetrahedron 2007, 63: 11862Reference Ris Wihthout Link - 8a
Sośnicki JG. Tetrahedron Lett. 2005, 46: 4295Reference Ris Wihthout Link - 8b
Sośnicki JG. Tetrahedron Lett. 2006, 47: 6809Reference Ris Wihthout Link - 9a
Bowman WR.Bridge CF. Synth. Commun. 1999, 29: 4051Reference Ris Wihthout Link - 9b
Kunishima M.Friedman JE.Rokita SE. J. Am. Chem. Soc. 1999, 121: 4722Reference Ris Wihthout Link - 9c
Shiao M.-J.Lai L.-L.Ku W.-S.Lin P.-Y.Hwu JR. J. Org. Chem. 1998, 58: 4742Reference Ris Wihthout Link - 9d
Hwu JR.Wong FF.Huang J.-J.Tsay S.-C. J. Org. Chem. 1997, 62: 4097Reference Ris Wihthout Link - 9e
Hongo H.Nakano H.Okuyama Y. Heterocycles 1995, 40: 831Reference Ris Wihthout Link - 9f
Newkome GR.Kohli DK.Kawato T. J. Org. Chem. 1980, 45: 4508Reference Ris Wihthout Link - 1-Substituted quinolizidin-4-ones are biologically active species. See, for example:
- 10a
Casagrande M.Basilico N.Parapini S.Romeo S.Taramelli D.Sparatore A. Bioorg. Med. Chem. 2008, 16: 6813Reference Ris Wihthout Link - 10b
Vazanna I.Budriesi R.Terranowa E.Ioan P.Ugenti MP.Tasso B.Chiarini A.Sparatore F. J. Med. Chem. 2007, 50: 334Reference Ris Wihthout Link - 10c
Kim D.-I.Deutsch HM.Ye X.Schwerei MM. J. Med. Chem. 2007, 50: 2718Reference Ris Wihthout Link - 11a
Mahiout Z.Lomberget T.Goncalves S.Barret R. Org. Biomol. Chem. 2008, 6: 1364Reference Ris Wihthout Link - 11b
Boros EE.Burova SA.Erickson GA.Johns BA.Koble CS.Kurose N.Sharp MJ.Tabet EA.Thompson JB.Toczko MA. Org. Process Res. Dev. 2007, 11: 899Reference Ris Wihthout Link - 11c
Denton TT.Zhang X.Cashman JR. J. Med. Chem. 2005, 48: 224Reference Ris Wihthout Link - 11d
Manoso AS.Ahn C.Soheili A.Handy CJ.Correia R.Seganish WM.DeShong P. J. Org. Chem. 2004, 69: 8305Reference Ris Wihthout Link - 11e
Hodgson DM.Maxwell CR.Wisedale R.Matthews IR.Carpenter KJ.Dickenson AH.Wonnacott S. J. Chem. Soc., Perkin Trans. 1 2001, 3150Reference Ris Wihthout Link - 11f
Giblin GMP.Jones CD. Synlett 1997, 589Reference Ris Wihthout Link - See, for example:
- 12a
Humphries PS.Do TQ.-Q.Wilhite DM. Tetrahedron Lett. 2009, 50: 1765Reference Ris Wihthout Link - 12b
Wroblewski B.Wigglesworth MJ.Szekeres PG.Smith GD.Rahman SS.Nicholson NH.Muir AI.Hall A.Heer JP.Gerland SL.Coates WJ. J. Med. Chem. 2009, 52: 818Reference Ris Wihthout Link - 12c
Brown A.Brown L.Brown B.Calabrese A.Ellis D.Puhalo N.Smith CR.Wallace O.Watson L. Bioorg. Med. Chem. Lett. 2008, 18: 5242Reference Ris Wihthout Link - 12d
Ebdrup S.Hoffmann H.Refsgaard F.Fledelius C.Jacobsen P. J. Med. Chem. 2007, 50: 5449Reference Ris Wihthout Link - 12e
Qu W.Kung M.-P.Hou C.Benedum TE.Kung HF. J. Med. Chem. 2007, 50: 2157Reference Ris Wihthout Link
References and Notes
Typical Procedure
of 5-Functionalisation of 2-Methoxy-pyridine
To a
cooled (0 ˚C) and stirred solution of n-BuMgCl (4.2 mmol, 2.1 mL, 2.0 M in
THF) in dry THF (4 mL) in a Schlenk flask, n-BuLi
(8.4 mmol, 3.4 mL, 2.5 M in hexane) was added via syringe over 1
min under argon, and the mixture was stirred for 5 min. To a yellow,
cooled (-2 to 0 ˚C) solution 5-bromo-2-methoxypyridine
(8.4 mmol, 1.09 mL) was added via syringe. The resulting solution
was stirred for 30 min at -2 to 0 ˚C,
then the electrophile was added (Table
[¹]
), and the mixture was
continuously stirred for 30 min at 0 ˚C and 1
h at r.t. After addition of aq sat. NH4Cl (5 mL), the
aqueous layer was extracted with EtOAc (2 × 75 mL),
and the combined organic layers were dried over MgSO4.
Filtration, concentration in vacuo, and purification by distillation
or flash column chromatography yielded compound 3.
Typical Procedure
of Transformation of 3 to Bicyclic Lactams 7
The mixture
of 3 (5.5 mmol), NaI (11 mmol), and allyl bromide
(38.5 mmol) was heated in MeCN (30 mL) at 55 ˚C for 1-6
d (see Table
[²]
).
Subsequently, the solvent was evaporated and brine containing 1% Na2S2O3 was
added. The aqueous solution was extracted with EtOAc (2 × 75 mL),
and the combined organic layers were dried over MgSO4.
Filtration, concentration in vacuo, and purification by flash column
chromatography yielded 4. To a cooled (0 ˚C)
and stirred solution of allylMgCl (4.9 mmol, 2.45 mL, 2.0 M in THF)
in dry THF (4 mL) in a Schlenk flask n-BuLi (9.8
mmol, 3.9 mL, 2.5 M in hexane) was added via syringe under argon,
the mixture was stirred for 5 min and then cooled to -72 ˚C.
The mixture containing 1b was next transferred
via syringe to a cooled (-72 ˚C) solution
of
N-allylpyridin-2-one (4, 9.0 mmol) in THF (20 mL). The resulting
solution was stirred for 20 min at -72 ˚C,
and then aq sat. NH4Cl (10 mL) was added. The aqueous
layer was extracted with EtOAc (2 × 75
mL), and the combined organic layers were dried over MgSO4.
Filtration, concentration in vacuo, and separation by flash column chromatography
yielded 5. To a solution of 1,6-diallyl lactam 5 (1.0 mmol) in dry, degassed toluene (10
mL), ruthenium catalyst 8 or 9 was added, and the reaction mixture was
stirred under slowly bubbled stream of argon at 70 ˚C.
After the reaction was complete (Table
[²]
), the solvent was evaporated
at reduced pressure, and the residue was left standing for 48 h
followed by purification on column chromatography.
Selected Spectroscopic
Data
2-Methoxy-5-trimethylsilanylpyridine
(3b)
Colorless oil. IR (film): 2956, 1586, 1556, 1488,
1352, 1286, 1250, 1116, 1026, 840 cm-¹.
MS (EI, 70 eV):
m/z (%) = 181
(32) [M+], 180 (17), 166 (100),
136 (7). ¹H NMR (400.1 MHz, CDCl3): δ = 0.26
(9 H, s, Me3Si), 3.94 (3 H, s, OCH3), 6.74
(1 H, dd, J = 8.3,
0.8 Hz, =CH-3), 7.65 (1 H, dd, J = 8.3,
1.9 Hz, =CH-4), 8.24 (1 H, dd, J = 1.8,
0.8 Hz, =CH-6). ¹³C NMR (100.6
MHz, CDCl3): δ = -1.1 (Me3Si),
53.3 (OCH3), 110.6 (CH-3), 126.3 (C-5), 143.5 (CH-4),
151.6 (CH-6), 164.8 (C-2). HRMS (EI): m/z calcd for
C9H15NOSi: 181.0923; found: 181.0922.
1-Trimethylsilanyl-3,6,9,9a-tetrahydroquinolizin-4-one (7b)
Colorless
oil. IR (film): 3036, 2960, 1666, 1644, 1468, 1444, 1404, 1296,
1254, 1116, 840, 760 cm-¹. MS (EI,
70 eV): m/z (%) = 221
(79) [M+], 220 (100), 206
(12), 152 (14), 148 (23), 124 (23), 100 (34), 73 (28). ¹H
NMR (400.1 MHz, CDCl3): δ = 0.15
(9 H, s, Me3Si), 2.00-2.10 (1 H, m, CHH-9),
2.34 (1 H, dm, J = ca.
17.1 Hz, CHH-9), 2.97-3.01 (2 H, m, CH2-3),
3.42 (1 H, dm, J = ca.
18.3 Hz, CHH-6), 4.16 (1 H, dq, J = 11.5,
3.4 Hz, CH-9a), 5.06 (1 H, dm, J = 18.3
Hz, CHH-6), 5.69-5.76 (1 H, m, =CH-7), 5.76-5.83
(1 H, m, =CH-8), 6.02 (1 H, ddd, J = 4.2,
3.2, 1.0 Hz, =CH-2). ¹³C NMR
(100.6 MHz, CDCl3): δ = -1.1
(Me3Si), 32.9 (CH2-3), 34.1 (CH2-9),
41.7 (CH2-6), 57.6 (CH-9a), 124.8 (=CH-8), 125.0
(=CH-7), 131.1 (=CH-2), 137.21 (C-1), 166.1 (C-4). HRMS
(EI): m/z calcd for C12H19NOSi:
221.1236; found: 221.1234.