Synthesis 2003(5): 0707-0716
DOI: 10.1055/s-2003-38076
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Organofluorine Compounds and Fluorinating Agents; 29: [1] Stereo­selective Synthesis and Reactivity of 2-Chlorodifluoromethyl-Substituted Mono­saccharides

Stefan Tews, Ralf Miethchen*, Helmut Reinke
Universität Rostock, Fachbereich Chemie, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany
Fax: +49(381)4986412; e-Mail: ralf.miethchen@chemie.uni-rostock.de;
Further Information

Publication History

Received 27 November 2002
Publication Date:
21 March 2003 (online)

Abstract

Chlorodifluoromethyl groups were introduced into the 2-position of the glycals 1, 5, 8, and 11 by dithionite-mediated addition of CF2ClBr. The reaction proceeded stereoselectively, i.e. the CF2Cl-group is always found trans to the neighbouring substituent at C-3 in the products. Because the primarily formed glycosyl bromides hydrolyse easily, the corresponding 2-chlorodifluoromethyl-2-deoxypyranoses 3, 6, 9, and 12 were isolated. Only 3,4,6-tri-O-acetyl-2-chlorodifluoromethyl-2-deoxy-d-glucopyranosyl bromide (2) was stable enough for chromatographic separation. The unprotected anomeric pyranoses 3, 6, 9, and 12 were acetylated by acetic anhydride/pyridine yielding the 1-O-acetyl derivatives 4, 7, 10, and 13. These compounds are suitable glycosyl donors, just as the anomeric phenyl thioglycosides 16 and 17 generated from 1,3,4-tri-O-acetyl-2-chlorodifluoromethyl-2-deoxy-d-arabinopyranside (7) and thiophenol (BF3-catalysis). Furthermore, the reactivity of glucosyl bromide 2, 6-deoxy-l-glucose derivative 13 and thioglycosides 16, 17 was investigated. On treatment of glucosyl bromide 2 with pyridine, the 2-chlorodifluoromethyl substituted glycal 14 is formed as the result of HBr elimination. Furthermore, the chlorodifluoromethyl group of compounds 14 and 16 was converted into a methoxycarbonyl group by refluxing in methanolic sodium methoxide (products 15 and 19, respectively). Finally, the thioglycosides 16 and 17 were subsequently deacetylated by CsF on alumina (yielding the dihydroxy derivatives 18 and 20) and acetalized with chloral/DCC (18 forming acetal 21 and carbonate 22) and acetone (20 forming acetal 23), respectively. X-ray analyses are given for the 1-O-acetate 4 and the thioglycosides 21 and 24.

1

Part 28: Schwäbisch, D.; Miethchen, R. J. Fluorine Chem. 2002, in press.

    References

  • 2 Filler R. Kobayashi Y. Yagupolskii LM. In Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications   Elsevier; Amsterdam: 1993. 
  • 3 Fluoroorganic Chemistry: Synthetic Challenges and Biomedical Rewards, Tetrahedron Symposia 58   Vol. 52:  Resnati G. Soloshnok VA. Tetrahedron; Pergamon: 1996.  p.1-330  
  • 4 Welch JT. Eswarakrishnan S. Fluorine in Bioorganic Chemistry   Wiley; New York: 1991. 
  • 5 Organofluorine Compounds-Chemistry and Applications   Yamamoto H. Springer-Verlag; Berlin: 2000. 
  • 6 Organofluorine Compounds. Houben-Weyl, Methods of Organic Chemistry   E10a-c:  Baasner B. Hagemann H. Tatlow JC. Thieme Verlag; Stuttgart: 1999/2000. 
  • 7 Special Issue on Fluorosugars. Carbohydrate Research   Vol. 327:  Miethchen R. Defaye J. Elsevier; Amsterdam: 2000.  p.1-218  
  • 8 Brace NO. J. Fluorine Chem.  1999,  93:  1 
  • 9 Tozer MJ. Herpin T. Tetrahedron  1996,  52:  8619 ; and references cited therein
  • 10 Burkholder CR. Dolbier WR. Medebielle M. J. Fluorine Chem.  2001,  109:  39 ; and references cited therein
  • 11 Chen QY. Israel J. Chem.  1999,  39:  172 
  • 12 Ding Z. Xia S. Ji X. Yang H. Tao F. Wang Q. Synthesis  2002,  349 
  • 13 Rico I. Cantacuzene D. Wakselman C. Tetrahedron Lett.  1981,  22:  3405 
  • 14 Huang W.-Y. J. Fluorine Chem.  1992,  58:  1 
  • 15 Huang W.-Y. Xie Y. Chinese J. Chem.  1991,  9:  351 ; Chem. Abstr. 1992, 116, 106596
  • 16 Wu FH. Huang BN. Lu L. Huang W.-Y. J. Fluorine Chem.  1996,  80:  91 
  • 17 Huang W.-Y. Wu F.-H. Israel J. Chem.  1999,  39:  167 
  • 18 Rong G. Keese R. Tetrahedron Lett.  1990,  31:  5615 
  • 19 Plenkiewicz H. Dmowski W. Lipinski M. J. Fluorine Chem.  2001,  111:  227 
  • 20 Zur C. Miethchen R. Eur. J. Org. Chem.  1998,  531 
  • 21 Miethchen R. Hein M. Reinke H. Eur. J. Org. Chem.  1998,  919 
  • 22 Platier-Royon R. Portella C. Carbohydr. Res.  2000,  327:  119 
  • 23 Monosaccharides. Their Chemistry and Their Roles in Natural Products   Collins P. Ferrier R. Wiley; New York: 1995.  p.317-319  
  • 24 Lemieux RU. Lineback DR. Can. J. Chem.  1965,  43:  94 
  • 25 Hughes NA. Carbohydr. Res.  1972,  25:  242 
  • 26 Zemplén G. Gerecs A. Hadácsy I. Ber. Dtsch. Chem. Ges.  1936,  69:  1827 
  • 27 Ando T. Yamawaki J. Kawate T. Sumi S. Hanafusa T. Bull. Chem. Soc. Jpn.  1982,  55:  2504 
  • 29 Miethchen R. Sowa Chr. Frank M. Michalik M. Reinke H. Carbohydr. Res.  2002,  337:  1 ; and references cited therein
  • 30 Sowa Chr. Miethchen R. Reinke H. J. Carbohydr. Chem.  2002,  21:  293 
  • 31 Zur C. Miller AO. Miethchen R. J. Fluorine Chem.  1998,  90:  67 
  • 33 Sheldrick GM. University of Göttingen; Göttingen: 1986. 
  • 34 Cremer D. Pople JA. J. Am. Chem. Soc.  1975,  97:  1354 
  • 35 Roth W. Pigman W. Methods Carbohydr. Chem.  1963,  2:  407 
1

Part 28: Schwäbisch, D.; Miethchen, R. J. Fluorine Chem. 2002, in press.

28

Treatment of thioglycoside 16 with Zemplén reagent at r.t. for 12 h gave a mixture of 18 and 19 (ratio, ca. 3:1).

32

Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC 198524-198526. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax +44(1223)336033 or e-mail: deposit@ccdc.cam.ac.uk) or via www.ccdc.cam.ac.uk/conts/retrieving.html.