Synthesis 2023; 55(17): 2658-2669
DOI: 10.1055/s-0042-1751468
feature

Synthesis of Stable Neutral Homoaromatic Hydrocarbons

Trung Tran Ngoc
,
Jasper van der Welle
,
Tobias Rüffer
,


Abstract

We report the synthesis of a variety of stable neutral homoaromatic molecules. The homoaromatic character is supported by bond length analysis (from crystal structure analysis data) and spectroscopic characteristics in NMR experiments. The influence of substitution on these homoannulenes is investigated and their reactivity with electrophiles is shown. First approaches to further functionalization via cross-coupling are demonstrated. The present work lays out a general approach to stable neutral homoaromatic hydrocarbon molecules.

Supporting Information



Publikationsverlauf

Eingereicht: 27. April 2023

Angenommen nach Revision: 02. Juni 2023

Artikel online veröffentlicht:
03. Juli 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Williams RV. Chem. Rev. 2001; 101: 1185
  • 2 Fernández I. Aromaticity. Modern Computational Methods and Applications, 1st ed. Elsevier; Amsterdam: 2021
  • 3 Cremer D, Childs RF, Kraka E. In The Chemistry of the Cyclopropyl Group . Rappoport Z. Wiley; Chichester: 1995
  • 4 Williams RV, Kurtz HA. In Advances in Physical Organic Chemistry . Bethell D. Academic Press; London: 1994
  • 5 Williams RV, Edwards WD, Zhang P, Berg DJ, Mitchell RH. J. Am. Chem. Soc. 2012; 134: 16742
  • 6 Paquette LA. Angew. Chem. Int. Ed. 1978; 17: 106
  • 7 Vogel E. Pure Appl. Chem. 1969; 20: 237
  • 8 Childs RF, Cremer D, Elia G. In The Chemistry of the Cyclopropyl Group . Rappoport Z. Wiley; Chichester: 1995
  • 9 Saini P, Bhasin P, Bansal RK. Comput. Theor. Chem. 2013; 1017: 72
  • 10 Chen Z, Jiao H, Wu JI, Herges R, Zhang SB, Schleyer P. vR. J. Phys. Chem. A 2008; 112: 10586
    • 11a Roth HD. In Advances in Theoretically Interesting Molecules . Thummel RP. JAI Press; Greenwich, CT: 1995
    • 11b Winstein S. Q. Rev., Chem. Soc. 1969; 23: 141
  • 12 Applequist DE, Roberts JD. J. Am. Chem. Soc. 1956; 78: 4012
    • 13a Childs RF. Acc. Chem. Res. 1984; 17: 347
    • 13b Keller CE, Pettit R. J. Am. Chem. Soc. 1966; 88: 606
    • 14a Evans WJ, Forrestal KJ, Ziller JW. J. Am. Chem. Soc. 1995; 117: 12635
    • 14b Laube T. J. Am. Chem. Soc. 1989; 111: 9224
    • 14c Laube T. Acc. Chem. Res. 1995; 28: 399
    • 14d Laube T, Lohse C. J. Am. Chem. Soc. 1994; 116: 9001
  • 15 Szabo KJ, Kraka E, Cremer D. J. Org. Chem. 1996; 61: 2783
    • 16a Präsang C, Amseis P, Scheschkewitz D, Geiseler G, Massa W, Hofmann M, Berndt A. Angew. Chem. Int. Ed. 2006; 45: 6745
    • 16b Zhang Y, Wu L, Wang H. J. Am. Chem. Soc. 2022; 144: 22446
    • 17a Woodward RB, Fukunaga T, Kelly RC. J. Am. Chem. Soc. 1964; 86: 3162
    • 17b Verevkin SP, Beckhaus H.-D, Rüchardt C, Haag R, Kozhushkov SI, Zywietz T, de Meijere A, Jiao H, Schleyer P. vR. J. Am. Chem. Soc. 1998; 120: 11130
    • 17c Rogers DW, Loggins SA, Samuel SD, Finnerty MA, Liebman JF. Struct. Chem. 1990; 1: 481
    • 17d Liebman JF, Paquette LA, Peterson JR, Rogers DW. J. Am. Chem. Soc. 1986; 108: 8267
    • 18a Quast H, Geißler E, Herkert T, Knoll K, Peters E.-M, Peters K, von Schnering HG. Chem. Ber. 1993; 126: 1465
    • 18b Quast H, Seefelder M. Angew. Chem. Int. Ed. 1999; 38: 1064
    • 18c Seefelder M, Quast H. Angew. Chem. Int. Ed. 1999; 38: 1068
    • 19a Paquette LA, Wingard RE, Russell RK. J. Am. Chem. Soc. 1972; 94: 4739
    • 19b Vogel E, Brinker UH, Nachtkamp K, Wassen J, Müllen K. Angew. Chem. Int. Ed. 1973; 12: 758
    • 19c Wenkert E, Hagaman EW, Paquette LA, Wingard RE, Russell RK. J. Chem. Soc., Chem. Commun. 1973; 135
    • 19d Günther H, Schmickler H, Brinker UH, Nachtkamp K, Wassen J, Vogel E. Angew. Chem. Int. Ed. 1973; 12: 760
    • 19e Paquette LA, Liao CC, Burson RL, Wingard RE, Shih CN, Fayos J, Clardy J. J. Am. Chem. Soc. 1977; 99: 6935
  • 20 Griffiths PR, Pivonka DE, Williams RV. Chem. Eur. J. 2011; 17: 9193
  • 21 Tran Ngoc T, Grabicki N, Irran E, Dumele O, Teichert JF. Nat. Chem. 2023; 15: 377
    • 22a Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer P. vR. Chem. Rev. 2005; 105: 3842
    • 22b Gershoni-Poranne R, Stanger A. Chem. Eur. J. 2014; 20: 5673
    • 22c Gershoni-Poranne R, Stanger A. In Aromaticity. Modern Computational Methods and Applications, 1st ed. Elsevier; Amsterdam: 2021
    • 22d Schleyer P. vR, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJ. R. J. Am. Chem. Soc. 1996; 118: 6317
    • 22e Stanger A. J. Org. Chem. 2006; 71: 883
    • 22f Stanger A. Eur. J. Org. Chem. 2020; 3120
    • 23a Geuenich D, Hess K, Köhler F, Herges R. Chem. Rev. 2005; 105: 3758
    • 23b Herges R, Geuenich D. J. Phys. Chem. A 2001; 105: 3214
    • 24a Paul R, Anderson GW. J. Am. Chem. Soc. 1960; 82: 4596
    • 24b Staab HA. Angew. Chem. Int. Ed. 1962; 1: 351
  • 26 As hydrogen atoms H-1 & H-1′ and H-2 & H-2′ are diastereotopic, due to the hindered rotation of the ester group above, no clear assignment was possible, and they are interchangeable. The hindered rotation of the ester moiety in 7a had been demonstrated by VT-NMR in our earlier study. See ref. 21 for details.
  • 27 Gomes JA, Mallion RB. Chem. Rev. 2001; 101: 1349
  • 28 CCDC 2257272 (12c), 2257273 (12d), 2257274 (12e), 2257275 (7b), 2257276 (7c), and 2257277 (15e) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
    • 29a Dobrowolski JC. ACS Omega 2019; 4: 18699
    • 29b Krygowski TM, Szatylowicz H, Stasyuk OA, Dominikowska J, Palusiak M. Chem. Rev. 2014; 114: 6383
    • 29c Ostrowski S, Dobrowolski JC. RSC Adv. 2014; 4: 44158
  • 30 Tang R.-J, Milcent T, Crousse B. J. Org. Chem. 2018; 83: 930
    • 31a Olah GA. Acc. Chem. Res. 1971; 4: 240
    • 31b Galabov B, Nalbantova D, Schleyer P. vR, Schaefer HF. Acc. Chem. Res. 2016; 49: 1191
    • 32a Colomer I, Chamberlain AE. R, Haughey MB, Donohoe TJ. Nat. Rev. Chem. 2017; 1: 1
    • 32b Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KR. K, Norwood VM, Aubé J. Chem. Rev. 2022; 122: 12544
    • 33a Colomer I, Barcelos RC, Christensen KE, Donohoe TJ. Org. Lett. 2016; 18: 5880
    • 33b Kelley BT, Walters JC, Wengryniuk SE. Org. Lett. 2016; 18: 1896
    • 34a Miyaura N, Yamada K, Suzuki A. Tetrahedron Lett. 1979; 20: 3437
    • 34b Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
  • 35 The HOMA indices for asteranes 7 were calculated for the cyclohexadiene moiety without the C(3′)–C(3) bond of the cyclopropyl group. Taking the C(3′)–C(3) bond into account, the HOMA indices decrease even further. For additional information, see Supporting Information.
  • 36 The HOMA indices for homoannulenes 12 were calculated for the hexatriene moiety, as the C(3′)–C(3) distance is not a real bond. For additional information, see Supporting Information.
    • 37a Fulmer GR, Miller AJ. M, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI. Organometallics 2010; 29: 2176
    • 37b Gottlieb HE, Kotlyar V, Nudelman A. J. Org. Chem. 1997; 62: 7512