Synthesis 2023; 55(23): 3927-3946
DOI: 10.1055/a-2126-0720
feature

Studies on Selective Metalation and Cross-Coupling Reactions of Oxazoles

Raphael Wagner
,
Philipp Wollnitzke
,
Sebastian Essig
,
Jan P. Gölz
,
Dirk Menche
Generous financial support by the Deutsche Forschungsgemeinschaft (DFG, ME-2756/9-1) is gratefully acknowledged.


Abstract

A general study on selective functionalization of unsubstituted oxazole is reported. Specific halogenation at C2 and C5 was enabled by a sequential deprotonation strategy that was based on the different pK a values of these positions, while a halide at C4 may be introduced by an optimized halogen dance reaction. Efficient protocols for subsequent sp2–sp2 and sp2–sp3 cross-coupling reactions of the derived oxazolyl halides were then established. This modular approach was applied in the total synthesis of ajudazol A and a selected analogue, demonstrating the general feasibility of these conditions in a complex setting.

Supporting Information



Publikationsverlauf

Eingereicht: 22. Mai 2023

Angenommen nach Revision: 10. Juli 2023

Accepted Manuscript online:
10. Juli 2023

Artikel online veröffentlicht:
24. August 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Present addresses: P.W., Universitätsklinikum Düsseldorf, Germany. S.E., Bayer AG, Wuppertal, Germany. J.P.G., dedica GmbH, Germany.
  • 2 Jin Z. Nat. Prod. Rep. 2011; 28: 1143
    • 3a Irschik H, Jansen R, Gerth K, Höfle G, Reichenbach H. J. Antibiot. 1995; 48: 962
    • 3b Irschick H, Jansen R, Gerth K, Höfle G, Reichenbach H. J. Antibiot. 1995; 48: 31
  • 4 Kunze B, Jansen R, Höfle G, Reichenbach H. J. Antibiot. 2004; 57: 151
  • 5 Li D, Gao N, Zhu N, Lin Y, Li Y, Chen M, You X, Lu Y, Wan K, Jiang J.-D, Jiang W, Si S. Bioorg. Med. Chem. Lett. 2015; 25: 5178
  • 6 Perlova O, Gerth K, Kaiser O, Hans A, Müller R. J. Biotechnol. 2006; 121: 174
  • 7 Kopp M, Irschik H, Pradella S, Müller R. ChemBioChem 2005; 6: 1277
  • 8 Buntin K, Weissman KJ, Müller R. ChemBioChem 2010; 11: 1137
  • 9 Wipf P, Miller CP. J. Org. Chem. 1993; 58: 3604
  • 10 Doi T, Yoshida M, Shin-ya K, Takahashi T. Org. Lett. 2006; 8: 4165
  • 11 Wollnitzke P, Essig S, Gölz JP, von Schwarzenberg K, Menche D. Org. Lett. 2020; 22: 6344
  • 12 For a recent review on ajudazol total syntheses, see: Salimimarand M, Rizzacasa MA. Org. Biomol. Chem. 2023; 21: 1341

    • For syntheses of fragments and analogues, see:
    • 13a Hobson SJ, Parkin A, Marquez R. Org. Lett. 2008; 10: 2813
    • 13b Egan BA, Paradowski M, Thomas LH, Marquez R. Org. Lett. 2011; 13: 2086
    • 13c Egan BA, Paradowski M, Thomas LH, Marquez R. Tetrahedron 2011; 67: 9700
    • 13d Thiede S, Winterscheid PM, Hartmann J, Schnakenburg G, Essig S, Menche D. Synthesis 2016; 48: 697
  • 14 For syntheses of the butenamide side chain, see: Krebs O, Taylor RJ. K. Org. Lett. 2005; 7: 1063

    • For syntheses of ajudazol analogues, see:
    • 15a Birkett S, Ganame D, Hawkins BC, Meiries S, Quach T, Rizzacasa MA. Org. Lett. 2011; 13: 1964
    • 15b Adair L, Egan BA, Pearson CM, Lopez-Gonzalez R, Kuchar M, Mendoza-Mendoza A, Prunet J, Marquez R. Eur. J. Org. Chem. 2020; 6661

      For full stereochemical determination and total syntheses of ajudazol B, see:
    • 16a Essig S, Bretzke S, Müller R, Menche D. J. Am. Chem. Soc. 2012; 134: 19362
    • 16b Essig S, Schmalzbauer B, Bretzke S, Scherer O, Koeberle A, Werz O, Müller R, Menche D. J. Org. Chem. 2016; 81: 1333
  • 17 Shen K, Fu Y, Li J.-N, Liu L, Guo Q.-X. Tetrahedron 2007; 63: 1568
  • 18 Proust N, Chellat M, Stambuli J. Synthesis 2011; 3083
  • 19 Schnürch M, Spina M, Khan AF, Mihovilovic MD, Stanetty P. Chem. Soc. Rev. 2007; 36: 1046
  • 20 Stanetty P, Spina M, Mihovilovic MD. Synlett 2005; 1433
  • 21 Iddon B. Heterocycles 1994; 37: 1263
  • 22 Williams DR, Fu L. Org. Lett. 2010; 12: 808
  • 23 Kamiya N, Chikami Y, Ishii Y. Synlett 1990; 675
  • 24 Yoshida Y, Sakakura Y, Aso N, Okada S, Tanabe Y. Tetrahedron 1999; 55: 2183
  • 25 Verkruijsse HD, Hasselaar M. Synthesis 1979; 292
  • 26 Bacsa J, Hanke F, Hindley S, Odedra R, Darling GR, Jones AC, Steiner A. Angew. Chem. Int. Ed. 2011; 50: 11685
  • 27 Schlenk W, Schlenk WJr. Ber. Dtsch. Chem. Ges. 1929; 62: 920
  • 28 Neufeld R, Teuteberg TL, Herbst-Irmer R, Mata RA, Stalke D. J. Am. Chem. Soc. 2016; 138: 4796
  • 29 Reeder MR, Gleaves HE, Hoover SA, Imbordino RJ, Pangborn JJ. Org. Process Res. Dev. 2003; 7: 696
  • 30 Stein CA, Morton TH. Tetrahedron Lett. 1973; 14: 4933
  • 31 Luo Y.-R. Comprehensive Handbook of Chemical Bond Energies. CRC Press; Boca Raton: 2007
  • 32 Kirchhoff JH, Netherton MR, Hills ID, Fu GC. J. Am. Chem. Soc. 2002; 124: 13662
  • 33 Farina V, Krishnan B. J. Am. Chem. Soc. 1991; 113: 9585
  • 34 Krasovskiy A, Malakhov V, Gavryushin A, Knochel P. Angew. Chem. Int. Ed. 2006; 45: 6040
  • 35 McCann LC, Organ MG. Angew. Chem. Int. Ed. 2014; 53: 4386
  • 36 Han C, Buchwald SL. J. Am. Chem. Soc. 2009; 131: 7532
  • 37 Hunter HN, Hadei N, Blagojevic V, Patschinski P, Achonduh GT, Avola S, Bohme DK, Organ MG. Chem. Eur. J. 2011; 17: 7845
  • 38 Achonduh GT, Hadei N, Valente C, Avola S, O’Brien CJ, Organ MG. Chem. Commun. 2010; 46: 4109
  • 39 Zhou J, Fu GC. J. Am. Chem. Soc. 2003; 125: 12527
  • 40 Nicolaou KC, Brenzovich WE, Bulger PG, Francis TM. Org. Biomol. Chem. 2006; 4: 2119