Synthesis 2007(19): 3021-3031  
DOI: 10.1055/s-2007-983882
PAPER
© Georg Thieme Verlag Stuttgart · New York

Trimethylsilyl Trifluoromethanesulfonate Catalyzed Nucleophilic Substitution To Give C- and N-Glucopyranosides Derived from d-Glucopyranose

Yoshiki Oda, Takashi Yamanoi*
The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo 173-0003, Japan
e-Mail: tyama@noguchi.or.jp;
Further Information

Publication History

Received 10 May 2007
Publication Date:
11 September 2007 (online)

Abstract

This paper describes the synthesis of C- and N-glucopyranosides via trimethylsilyl trifluoromethanesulfonate catalyzed nucleophilic substitution of glucopyranosides, derived from d-glucopyranose, with methyl, ethyl, n-butyl, allyl, benzyl, and phenyl groups at the anomeric carbon centers. Generally, the reactions using allyltrimethylsilane, trimethylsilyl azide, trimethylsilyl cyanide, and 1-phenyl-1-(trimethylsiloxy)ethene as the nucleophiles in the presence of 20 mol% trimethylsilyl trifluoromethanesulfonate in acetonitrile­ at -40 °C smoothly proceeded with α-stereoselectivity to afford various C- and N-glucopyranosides in 78-99% yield. Although a decrease in the synthetic yields was observed for some reactions using glucopyranoses with allyl and benzyl groups at the anomeric carbon, the yields could be improved using glucopyranosyl acetates in the presence of 20 mol% trimethylsilyl trifluoro­methanesulfonate in acetonitrile-dichloromethane (1:1) at -78 °C.

    References

  • 1 Levy DE. Tang C. The Chemistry of C-Glycosides   Pergamon; Oxford: 1995. 
  • For examples, see:
  • 2a Suh H. Wilcox CS. J. Am. Chem. Soc.  1998,  110:  470 
  • 2b Nicolaou KC. Bunnage MK. McGarry DG. Shi S. Somers PK. Wallace PA. Chu X.-J. Agrios KA. Gunzner JL. Yang Z. Chem. Eur. J.  1999,  5:  599 
  • 2c Nicolaou KC. Reddy KR. Skokotas G. Sato F. Xiao X.-Y. Hwang C.-K. J. Am. Chem. Soc.  1993,  115:  3558 
  • 2d Gomez AM. Casillas M. Valverde S. Lopez JC. Tetrahedron: Asymmetry  2001,  12:  2175 
  • For examples, see:
  • 3a Kraus GA. Molina MT. J. Org. Chem.  1988,  53:  752 
  • 3b Czernecki S. Ville G. J. Org. Chem.  1989,  54:  610 
  • For examples of reported C-glycosidation methods, see:
  • 4a Chen G.-R. Fei ZB. Huang X.-T. Xie Y.-Y. Xu J.-L. Gola J. Steng M. Praly J.-P. Eur. J. Org. Chem.  2001,  2939 
  • 4b Gomez AM. Uriel C. Jarosz S. Valverde S. Lopez JC. Eur. J. Org. Chem.  2003,  4830 ; and references cited therein
  • For the reported O-glycosidation methods, see:
  • 4c Yamanoi T. Oda Y. Matsuda S. Yamazaki I. Matsumura K. Katsuraya K. Watanabe M. Inazu T. Tetrahedron  2006,  62:  10383 
  • 4d

    See also references cited in reference 4c.

  • 5a

    See reference 4c.

  • 5b Yamanoi T. Matsuda S. Yamazaki I. Inoue R. Hamasaki K. Watanabe M. Heterocycles  2006,  68:  673 
  • 5c Yamanoi T. Inoue R. Matsuda S. Katsuraya K. Hamasaki K. Tetrahedron: Asymmetry  2006,  17:  2914 
  • 5d Yamanoi T. Matsumura K. Matsuda S. Oda Y. Synlett  2005,  2973 
  • 5e Yamanoi T. Oda Y. Yamazaki I. Shinbara M. Morimoto K. Matsuda S. Lett. Org. Chem.  2005,  2:  242 
  • 6 Yamanoi T. Oda Y. Heterocycles  2002,  57:  229 
  • 7 We also found that glucopyranoses carrying vinyl groups at the anomeric centers showed quite different reactivity with nucleophiles such as allyltrimethylsilane and silyl enol ethers. The reactions of the glucopyranoses with these nucleophiles in the presence of TMSOTf afforded the exo-glycals via an SN1′-type reaction mechanism, see: Yamanoi T. Nara Y. Matsuda S. Oda Y. Yoshida A. Katsuraya K. Watanabe M. Synlett  2007,  785 
  • 8 Wenger W. Vasella A. Helv. Chim. Acta  2000,  1542 
  • 9 Yang W.-B. Yang Y.-Y. Gu Y.-F. Wang S.-H. Chang C.-C. Lin C.-H. J. Org. Chem.  2002,  67:  3773 
  • 10 Ellsworth BA. Doyle AG. Patel M. Caceres-Cortes J. Meng W. Deshpande PP. Pullockaran A. Washburn WN. Tetrahedron: Asymmetry  2003,  14:  3243 
  • 11 Li X. Ohtake H. Takahashi H. Ikegami S. Tetrahedron  2001,  57:  4283