Synthesis 2023; 55(23): 3919-3926
DOI: 10.1055/s-0042-1751482
feature

Platinum(II) Complexes with Phenylpyridine, Benzo[h]quinoline, and NHC Ligands: Exploration of Ligand Effects on Photophysical Properties

Piermaria Pinter
,
Johannes Soellner
,
Thomas Strassner
J.S. would like to thank the Studienstiftung des Deutschen Volkes for funding.


Abstract

Platinum(II) complexes with one cyclometalated phenylpyridine or benzo[h]quinoline (C^N) ligand and an N-heterocyclic carbene (NHC) ligand are a robust and readily available class of sky-blue to green phosphorescent triplet emitters. They can be used as a benchmark system to investigate the influence of different ligands on the emissive properties of these [Pt(C^N)(NHC)I] complexes. This new class of compounds was fully characterized by standard techniques. Additionally a solid-state structure could be obtained. Photoluminescence measurements at room temperature revealed the strong emissive behavior of these compounds with quantum yields of up to 80%. The effect of electron-withdrawing and -donating groups on the photophysical properties was examined and rationalized by density functional theory calculations (PBE0/6-311G(d)).

Supporting Information



Publikationsverlauf

Eingereicht: 17. Mai 2023

Angenommen nach Revision: 10. Juli 2023

Artikel online veröffentlicht:
28. August 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR. Nature 1998; 395: 151
  • 2 Tsuboyama A, Okada S, Ueno K. Highly Efficient Red-Phosphorescent Iridium Complexes. In Highly Efficient OLEDs with Phosphorescent Materials. Yersin H. Wiley-VCH; Heidelberg: 2008: 163-183
  • 3 Jing Y.-M, Wang F.-Z, Zheng Y.-X, Zuo J.-L. J. Mater. Chem. C 2017; 5: 3714
  • 4 Fan C, Yang C. Chem. Soc. Rev. 2014; 43: 6439
  • 5 Hudson ZM, Helander MG, Lu ZH, Wang SN. Chem. Commun. 2011; 47: 755
  • 6 Laskar IR, Hsu S.-F, Chen T.-M. Polyhedron 2005; 24: 881
  • 7 Jou J.-H, Wu R.-Z, Yu H.-H, Li C.-J, Jou Y.-C, Peng S.-H, Chen Y.-L, Chen C.-T, Shen S.-M, Joers P, Hsieh C.-Y. ACS Photonics 2014; 1: 27
  • 8 Zhu Y.-C, Zhou L, Li H.-Y, Xu Q.-L, Teng M.-Y, Zheng Y.-X, Zuo J.-L, Zhang H.-J, You X.-Z. Adv. Mater. 2011; 23: 4041
  • 9 Li Y, Zhou L, Jiang Y, Cui R, Zhao X, Zheng Y, Zuo J, Zhang H. RSC Adv. 2016; 6: 63200
  • 10 Fu H, Cheng Y.-M, Chou P.-T, Chi Y. Mater. Today 2011; 14: 472
  • 11 Fleetham T, Li G, Wen L, Li J. Adv. Mater. 2014; 26: 7116
  • 12 Suzuri Y, Oshiyama T, Ito H, Hiyama K, Kita H. Sci. Technol. Adv. Mater. 2014; 15: 054202 DOI: 10.1088/1468-6996/15/5/054202.
  • 13 Lam WH, Lam ES.-H, Yam VW.-W. J. Am. Chem. Soc. 2013; 135: 15135
  • 14 Escudero D, Thiel W. Inorg. Chem. 2014; 53: 11015
  • 15 Escudero D, Jacquemin D. Dalton Trans. 2015; 44: 8346
  • 16 Jacquemin D, Escudero D. Chem. Sci. 2017; 8: 7844
  • 17 Arroliga-Rocha S, Escudero D. Inorg. Chem. 2018; 57: 12106
  • 18 Sajoto T, Djurovich PI, Tamayo AB, Oxgaard J, Goddard WA, Thompson ME. J. Am. Chem. Soc. 2009; 131: 9813
  • 19 Williams JA. G. In Photochemistry and Photophysics of Coordination Compounds II . Balzani V, Campagna S. Springer; Berlin: 2007: 205-268
  • 20 Kalinowski J, Fattori V, Cocchi M, Williams JA. G. Coord. Chem. Rev. 2011; 255: 2401
  • 21 Yersin H, Rausch AF, Czerwieniec R, Hofbeck T, Fischer T. Coord. Chem. Rev. 2011; 255: 2622
  • 22 Chiung-Fang C, Yi-Ming C, Yun C, Yuan-Chieh C, Chao-Chen L, Gene-Hsiang L, Pi-Tai C, Chung-Chia C, Chih-Hao C, Chung-Chih W. Angew. Chem. Int. Ed. 2008; 47: 4542
  • 23 Lee J, Chen HF, Batagoda T, Coburn C, Djurovich PI, Thompson ME, Forrest SR. Nat. Mater. 2016; 15: 92
  • 24 Unger Y, Meyer D, Molt O, Schildknecht C, Munster I, Wagenblast G, Strassner T. Angew. Chem. Int. Ed. 2010; 49: 10214
  • 25 Brooks J, Babayan Y, Lamansky S, Djurovich PI, Tsyba I, Bau R, Thompson ME. Inorg. Chem. 2002; 41: 3055
  • 26 D'Andrade BW, Brooks J, Adamovich V, Thompson ME, Forrest SR. Adv. Mater. 2002; 14: 1032
  • 27 Thompson ME, Brooks J, Adamovich V, Forrest SR, D’Andrade B. US 20030175553 A1, 2003
  • 28 Perez MD, Djurovich PI, Hassan A, Cheng GY, Stewart TJ, Aznavour K, Bau R, Thompson ME. Chem. Commun. 2009; 4215
  • 29 Rausch AF, Thompson ME, Yersin H. Chem. Phys. Lett. 2009; 468: 46
  • 30 Hudson ZM, Sun C, Helander MG, Amarne H, Lu ZH, Wang SN. Adv. Funct. Mater. 2010; 20: 3426
  • 31 Hudson ZM, Wang SN. Organometallics 2011; 30: 4695
  • 32 Hudson ZM, Sun C, Helander MG, Chang YL, Lu ZH, Wang SN. J. Am. Chem. Soc. 2012; 134: 13930
  • 33 Petretto GL, Wang M, Zucca A, Rourke JP. Dalton Trans. 2010; 39: 7822
  • 34 Soellner J, Tenne M, Wagenblast G, Strassner T. Chem. Eur. J. 2016; 22: 9914
  • 35 Strassner T. Acc. Chem. Res. 2016; 49: 2680
  • 36 Sajoto T, Djurovich PI, Tamayo A, Yousufuddin M, Bau R, Thompson ME, Holmes RJ, Forrest SR. Inorg. Chem. 2005; 44: 7992
  • 37 Stringer BD, Quan LM, Barnard PJ, Wilson DJ. D, Hogan CF. Organometallics 2014; 33: 4860
  • 38 Adamovich V, Boudreault P.-LT, Esteruelas MA, Gómez-Bautista D, López AM, Oñate E, Tsai J.-Y. Organometallics 2019; 38: 2738
  • 39 Fuertes S, Garcia H, Peralvarez M, Hertog W, Carreras J, Sicilia V. Chem. Eur. J. 2015; 21: 1620
  • 40 Fuertes S, Chueca AJ, Arnal L, Martin A, Giovanella U, Botta C, Sicilia V. Inorg. Chem. 2017; 56: 4829
  • 41 Yan X, Feng R, Yan C, Lei P, Guo S, Huynh HV. Dalton Trans. 2018; 47: 7830
  • 42 Solomatina AI, Krupenya DV, Gurzhiy VV, Zlatkin I, Pushkarev AP, Bochkarev MN, Besley NA, Bichoutskaia E, Tunik SP. Dalton Trans. 2015; 44: 7152
  • 43 Sun RW.-Y, Chow AL.-F, Li X.-H, Yan JJ, Chui SS.-Y, Che C.-M. Chem. Sci. 2011; 2: 728
    • 44a Ibanez S, Guerrero A, Poyatos M, Peris E. Chem. Eur. J. 2015; 21: 10566
    • 44b Hu JJ, Bai S.-Q, Yeh HH, Young DJ, Chi Y, Hor TS. A. Dalton Trans. 2011; 40: 4402
  • 45 Adamo C, Barone V. J. Chem. Phys. 1999; 110: 6158
  • 46 Ernzerhof M, Scuseria GE. J. Chem. Phys. 1999; 110: 5029
  • 47 Glukhovtsev MN, Pross A, McGrath MP, Radom L. J. Chem. Phys. 1995; 103: 1878
  • 48 Krishnan R, Binkley JS, Seeger R, Pople JA. J. Chem. Phys. 1980; 72: 650
  • 49 McLean AD, Chandler GS. J. Chem. Phys. 1980; 72: 5639
  • 50 Roy LE, Hay PJ, Martin RL. J. Chem. Theory Comput. 2008; 4: 1029
  • 51 Hay PJ, Wadt WR. J. Chem. Phys. 1985; 82: 270
  • 52 Hay PJ, Wadt WR. J. Chem. Phys. 1985; 82: 299
  • 53 Grimme S, Ehrlich S, Goerigk L. J. Comput. Chem. 2011; 32: 1456
  • 54 Teng Q, Ng PS, Leung JN, Huynh HV. Chem. Eur. J. 2019; 25: 13956
  • 55 Fuertes S, Chueca AJ, Sicilia V. Inorg. Chem. 2015; 54: 9885
  • 56 Waern JB, Desmarets C, Chamoreau L.-M, Amouri H, Barbieri A, Sabatini C, Ventura B, Barigelletti F. Inorg. Chem. 2008; 47: 3340
  • 57 Tronnier A, Pothig A, Metz S, Wagenblast G, Munster I, Strassner T. Inorg. Chem. 2014; 53: 6346
  • 58 Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Kwong R, Tsyba I, Bortz M, Mui B, Bau R, Thompson ME. Inorg. Chem. 2001; 40: 1704
  • 59 Tronnier A, Risler A, Langer N, Wagenblast G, Munster I, Strassner T. Organometallics 2012; 31: 7447
  • 60 Pinter P, Mangold H, Stengel I, Munster I, Strassner T. Organometallics 2016; 35: 673
  • 61 Pregosin PS, Wombacher F, Albinati A, Lianza F. J. Organomet. Chem. 1991; 418: 249
  • 62 CCDC 2262104 (5) contains the supplementary crystallographic data for this publication. The data can be obtained free of charge from the joint Cambridge Crystallographic Data Centre and Fachinformationscenter Karlsruhe Access Structures service.