Synthesis 2020; 52(17): 2551-2562
DOI: 10.1055/s-0040-1707907
paper
© Georg Thieme Verlag Stuttgart · New York

Stereoselective Synthesis of Spiro-α-methylene-γ-lactams via Chiral Quaternary 3-Aminooxindole Adducts Accessed by Zn-Mediated Allylation of Sulfinyl Ketimines

V. U. Bhaskara Rao
,
Shashank Singh
,
Krishna N. Tripathi
,
Ravi P. Singh
We are grateful for the generous financial support from the Science and Engineering Research Board, DST-India (EMR/2017/000319), the Council of Scientific and Industrial Research (CSIR), India [02(0254)/16/EMR-II], and the Board of Research in Nuclear Sciences, DAE (58/1408/2019-BRNS/10377). V.U.B.R. and K.N.T. thank CSIR for Senior Research Fellowships.
Weitere Informationen

Publikationsverlauf

Received: 28. April 2020

Accepted after revision: 16. Juni 2020

Publikationsdatum:
03. August 2020 (online)


§ Both authors contributed equally to this work.

Abstract

An efficient method for the stereoselective synthesis of α-methylene-γ-lactams via quaternary 3-aminooxindoles with very high selectivity (up to 98% ee) is described. The methodology leads to the construction of sterically congested chiral quaternary 3-aminooxindole adducts in good yield and with moderate to excellent diastereoselectivity (dr up to 95:5). The relative stereochemistry of the chiral quaternary 3-aminooxindoles adduct and the spiro-α-methylene-γ-lactam was confirmed to be syn by single-crystal X-ray structure analysis. Furthermore, the α-methylene-γ-lactam was successfully transformed into a range of chiral synthons.

Supporting Information

 
  • Reference

    • 1a Yamada KI, Tomioka K. Chem. Rev. 2008; 108: 2874
    • 1b Robak MT, Herbage MA, Ellman JA. Chem. Rev. 2010; 110: 3600
    • 1c Kobayashi S, Mori Y, Fossey JS, Salter MM. Chem. Rev. 2011; 111: 2626
    • 1d Pellissier H. Beilstein J. Org. Chem. 2018; 14: 1349
    • 1e Kaur J, Chimni SS. Org. Biomol. Chem. 2018; 16: 3328
    • 1f Boezio AA, Pytkowicz J, Côté A, Charette AB. J. Am. Chem. Soc. 2003; 125: 14260
    • 1g Soeta T, Nagai K, Fujihara H, Kuriyama M, Tomioka K. J. Org. Chem. 2003; 68: 9723
    • 1h Rong J, Collados J, Ortiz P, Jumde RP, Otten E, Harutyunyan SR. Nat. Commun. 2016; 7: 13780
    • 1i Moradi R, Ziarani GM, Lashgari N. ARKIVOC 2017; (i): 148
    • 1j Su L, Xu MH. Synthesis 2016; 48: 2595
    • 1k Sarah J, Saranya S, Ujwaldev SM, Anilkumar G. The Chemist 2018; 91: 50
    • 2a Yus M, González-Gómez JC, Foubelo F. Chem. Rev. 2013; 113: 5595
    • 2b Wang J, Zhang Q, Zhou B, Yang C, Li X, Cheng JP. iScience 2019; 16: 511
    • 2c Fernandes RA, Yamamoto Y. J. Org. Chem. 2004; 69: 3562
    • 2d Wada R, Shibuguchi T, Makino S, Oisaki K, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2006; 128: 7687
    • 2e Sun XW, Xu MH, Lin GQ. Org. Lett. 2006; 8: 4979
    • 2f Fujita M, Nagano T, Schneider U, Hamada T, Ogawa C, Kobayashi S. J. Am. Chem. Soc. 2008; 130: 2914
    • 2g Lin GQ, Xu MH, Zhong YW, Sun XW. Acc. Chem. Res. 2008; 41: 831
    • 3a Ding CH, Hou XL. Chem. Rev. 2011; 111: 1914
    • 3b Zani L, Alesi S, Cozzi PG, Bolm C. J. Org. Chem. 2006; 71: 1558
    • 3c Fandrick DR, Johnson CS, Fandrick KR, Reeves JT, Tan Z, Lee H, Song JJ, Yee NK, Senanayake CH. Org. Lett. 2010; 12: 748
    • 3d Osborne CA, Endean TB. D, Jarvo ER. Org. Lett. 2015; 17: 5340
    • 4a Enders D, Reinhold U. Tetrahedron: Asymmetry 1997; 8: 1895
    • 4b Shen A, Liu M, Jia ZS, Xu MH, Lin GQ. Org. Lett. 2010; 12: 5154
  • 5 Dong HQ, Xu MH, Feng CG, Sun XW, Lin GQ. Org. Chem. Front. 2015; 2: 73
    • 6a Caruano J, Muccioli GG, Robiette R. Org. Biomol. Chem. 2016; 14: 10134
    • 6b Marti C, Carreira EM. Eur. J. Org. Chem. 2003; 2209
    • 6c Nussbaum FV, Danishefsky SJ. Angew. Chem. Int. Ed. 2000; 39: 2175
  • 7 Sirvent JA, Foubelo F, Yus M. Chem. Commun. 2012; 48: 2543
  • 8 Barros OS. D. R, Sirvent JA, Foubelo F, Yus M. Chem. Commun. 2014; 50: 6898
  • 9 Liu M, Shen A, Sun XW, Deng F, Xu MH, Lin GQ. Chem. Commun. 2010; 46: 8460
  • 10 Cai SL, Yuan BH, Jiang YX, Lin GQ, Sun XW. Chem. Commun. 2017; 53: 3520
  • 11 Reddy LR, Hu B, Prashad M, Prasad K. Org. Lett. 2008; 10: 3109
    • 12a Cardellina JH, Moore RE. Tetrahedron Lett. 1979; 22: 2007
    • 12b Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, Fenical W. Angew. Chem. Int. Ed. 2003; 42: 355
    • 12c Nay B, Riache N, Evanno L. Nat. Prod. Rep. 2009; 26: 1044
    • 12d Gulder TA. M, Moore BS. Angew. Chem. Int. Ed. 2010; 49: 9346
    • 12e Tan W, Zhu XT, Zhang S, Xing GJ, Zhu RY, Shi F. RSC Adv. 2013; 3: 10875
  • 13 Alcaide B, Almendros P, Aragoncillo C. Eur. J. Org. Chem. 2010; 2845
  • 14 Cao ZY, Zhang Y, Ji CB, Zhou JA. Org. Lett. 2011; 13: 6398
  • 15 Lesma G, Landoni N, Pilati T, Sacchetti A, Silvani A. J. Org. Chem. 2009; 74: 4537
  • 16 Chen D, Xu MH. Chem. Commun. 2013; 49: 1327
  • 17 Rao VU. B, Jadhav AP, Garad D, Singh RP. Org. Lett. 2014; 16: 648
  • 18 Aslam NA, Rajkumar V, Reddy C, Yasuda M, Baba A, Babu SA. Eur. J. Org. Chem. 2012; 4395
  • 19 Shen A, Liu M, Jia Z.-S, Xu M.-H, Lin G.-Q. Org. Lett. 2010; 12: 5154
  • 20 Companyó X, Geant P.-V, Mazzanti A, Moyano A, Rios R. Tetrahedron 2014; 70: 75
  • 21 Zou Y, Garayalde D, Wang Q, Nevado C, Goeke A. Angew. Chem. Int. Ed. 2008; 47: 10110
  • 22 Jadhav AP, Rao VU. B, Singh P, Gonnade RG, Singh RP. Chem. Commun. 2015; 51: 13941
  • 23 Rao VU. B, Kumar K, Singh RP. Org. Biomol. Chem. 2015; 13: 9755
  • 24 CCDC 1955665 (4b), 1955679 (5a) and 1955799 (6c) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.