Synthesis 2020; 52(02): 263-272
DOI: 10.1055/s-0039-1690729
paper
© Georg Thieme Verlag Stuttgart · New York

Pictet–Spengler Synthesis of Perfluoroalkylated Tetrahydro-γ-carbolines and Tetrahydropyrrolopyrazines

Natalia G. Voznesenskaia
,
Olga I. Shmatova
,
Valentine G. Nenajdenko
Moscow State University, Department of Chemistry, Leninskie Gory, Moscow 119992, Russian Federation   eMail: nenajdenko@org.chem.msu.ru
› Institutsangaben
This study was funded by the Russian Foundation for Basic Research (18-33-00574mol_a and 17-53-45068).
Weitere Informationen

Publikationsverlauf

Received: 06. Juni 2019

Accepted after revision: 05. Oktober 2019

Publikationsdatum:
28. Oktober 2019 (online)


Abstract

A new method for the synthesis of perfluoroalkylated derivatives of γ-carboline and pyrrolopyrazine was elaborated. Pictet–Spengler reaction of isotryptamine and 2-(pyrrol-1-yl)ethanamine with trifluoromethylated carbonyls and 2-perfluoroalkyl-substituted five-, six-, and seven-membered cyclic imines was studied. It was found that this approach opens efficient access to a family of alkaloid-like compounds bearing a CF3 or C2F5 group in the structure. In the case of the iso-Pictet–Spengler reaction with 2-perfluoroalkyl-substituted cyclic imines, a series of γ-carbolines bearing an aminoalkyl group were prepared.

Supporting Information

 
  • References

    • 1a Cao R, Peng W, Wang Z, Xu A. Curr. Med. Chem. 2007; 14: 479
    • 1b Gupta A, Kamble B, Nanjan MJ, Nanjan CM. J. Curr. Org. Synth. 2012; 9: 377
    • 1c Wadsworth AD, Naysmith BJ, Brimble MA. Eur. J. Med. Chem. 2015; 97: 816
    • 1d Devi N, Singh D, Kaur G, Mor S, Putta VP. R. K, Polina S, Malakar CC, Singh V. New J. Chem. 2017; 41: 1082
    • 1e Sako K, Aoyama H, Sato S, Hashimoto Y, Baba M. Bioorg. Med. Chem. 2008; 16: 3780
    • 1f Bhatti IA, Busby RE, Mohamed MB, Parrick J, Granville Shaw CJ. J. Chem. Soc., Perkin Trans. 1 1997; 3581
    • 1g Kazerani S, Novak MJ. J. Org. Chem. 1998; 63: 895
    • 2a González-Gómez A, Domínguez G, Pérez-Castells J. Tetrahedron 2009; 65: 3378
    • 2b Milen M, Ábranyi-Balogh P. Chem. Heterocycl. Compd. 2016; 52: 996
    • 2c Davis RA, Carroll AR, Quinn RJ. J. Nat. Prod. 1998; 61: 959
    • 2d Hemmateenejad B, Abbaspour A, Maghami H, Miri R, Panjehshahin MR. Anal. Chim. Acta 2006; 575: 290
    • 2e Herraiz T, González D, Ancín-Azpilicueta C, Arán VJ, Guillén H. Food Chem. Toxicol. 2010; 48: 839
    • 2f Lake RJ, Blunt JW, Munro MH. G. Aust. J. Chem. 1989; 42: 1201
    • 2g Badre A, Boulanger A, Abou-Mansour E, Banaigs B, Combaut G, Francisco C. J. Nat. Prod. 1994; 57: 528
    • 2h Netz N, Opatz T. Mar. Drugs 2015; 13: 4814
    • 2i Xu W, Gavia DJ, Tang Y. Nat. Prod. Rep. 2014; 31: 1474
    • 2j Ishikura M, Abe T, Choshib T, Hibinob S. Nat. Prod. Rep. 2015; 32: 1389
    • 2k Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
    • 2l Ozawa M, Nakada Y, Sugimachi K, Yabuuchi F, Akai T, Mizuta E, Kuno S, Yamaguchi M. Jpn. J. Pharmacol. 1994; 64: 179
    • 2m Pinna G, Galici R, Schneider HH, Stephens DN, Turski L. Proc. Natl. Acad. Sci. U.S.A. 1997; 94: 2719
    • 2n Venault P, Chapouthier G. Sci. World J. 2007; 7: 204
    • 3a Davis RA, Duffy S, Avery VM, Camp D, Hooper JN, Quinn RJ. Tetrahedron Lett. 2010; 51: 583
    • 3b Cesar LM, Tormena CF, Marques MR, Silva GV. J, Mendes MA, Rittner R, Palma MS. Helv. Chim. Acta 2005; 88: 796
    • 3c Chan ST. S, Pearce AN, Page MJ, Kaiser M, Copp BR. J. Nat. Prod. 2011; 74: 1972
    • 3d Wang J, Pearce AN, Chan ST. S, Taylor RB, Page MJ, Valentin A, Bourguet-Kondracki M.-L, Dalton JP, Wiles S, Copp BR. J. Nat. Prod. 2016; 79: 607
    • 4a Van Wagoner RM, Jompa J, Tahir A, Ireland CM. J. Nat. Prod. 1999; 62: 794
    • 4b Cesar LM. M, Mendes MA, Tormena CF, Marques MR, de Souza BM, Saidemberg DM, Bittencourt JC, Palma MS. Toxicon 2005; 46: 786
  • 5 Üstünes L, Özer A, Laekeman GM, Corthout J, Pieters LA. C, Baeten W, Herman AG, Claeys M, Vlietinck AJ. J. Nat. Prod. 1991; 54: 959
  • 6 Shmatova OI, Khrustalev VN, Nenajdenko VG. Org. Lett. 2016; 18: 4494
    • 7a Pictet A, Spengler T. Ber. Dtsch. Chem. Ges. 1911; 44: 2030
    • 7b Cox ED, Cook JM. Chem. Rev. 1995; 95: 1797
    • 8a He Y, Lin M, Li Z, Liang X, Li G, Antilla JC. Org. Lett. 2011; 13: 4490
    • 8b Lee Y, Klausen RS, Jacobsen EN. Org. Lett. 2011; 13: 5564
    • 8c Riesco-Domínguez A, van der Zwaluw N, Blanco-Ania D, Rutjes FP. J. T. Eur. J. Org. Chem. 2017; 662
    • 8d Jesus M, MuÇoz G, Foubelo F, Yus M. J. Org. Chem. 2016; 81: 10214
    • 8e Huang L, Dai L.-X, You S.-L. J. Am. Chem. Soc. 2016; 138: 5793
    • 8f Dawange MA, Urmode TD, Khan A, Kusurkar RS. ChemistrySelect 2017; 2: 2552
    • 9a Bridoux A, Millet R, Pommery J, Pommery N, Henichart J.-P. Bioorg. Med. Chem. 2010; 18: 3910
    • 9b Butler KV, Kalin J, Brochier C, Vistoli G, Langley B, Kozikowski AP. J. Am. Chem. Soc. 2010; 132: 10842
    • 9c Harbart CA, Plattner JJ, Welch WM. J. Med. Chem. 1980; 23: 635
    • 9d Gharbia-Abou M, Patel UR, Webb MB, Moyer JA, Andree TH, Muth EA. J. Med. Chem. 1987; 30: 1818
    • 9e Khorana N, Smith C, Herrick-Davis K, Purohit A, Teitler M, Grella B, Dukat M, Glennon RA. J. Med. Chem. 2003; 46: 3930
    • 9f Bonjoch J, Diaba F, Pagès L, Pérez D, Soca L, Miralpeix M, Vilella D, Anton P, Puig C. Bioorg. Med. Chem. Lett. 2009; 19: 4299
    • 10a Yanagisawa H, Shimoji Y, Hashimoto T. JP 05310738, 1993 ; Heisei. Chem. Abstr. 1994, 120, 245056
    • 10b Clark RD, Miller AB, Berger J, Repke DB, Weinhardt KK, Kowalczyk BA, Eglen RM, Bonhaus DW, Lee C.-H, Michel AD, Smith WL, Wong EH. F. J. Med. Chem. 1993; 36: 2645
    • 10c Costall B, Naylor RJ. Curr. Drug Targets: CNS Neurol. Disord. 2004; 3: 27
    • 11a Vishwakarma S, Iyer LR, Muley M, Singh PK, Shastry A, Saxena A, Kulathingal J, Vijaykanth G, Raghul J, Rajesh N, Rathinasamy S, Kachhadia V, Kilambi N, Rajgopal S, Balasubramanian G, Narayanan S. Int. Immunopharmacol. 2013; 16: 72
    • 11b Weinreb SM. Nat. Prod. Rep. 2007; 24: 931
    • 11c Dong G. Pure Appl. Chem. 2010; 82: 2231
    • 11d Lansdell TA, Hewlett NM, Skoumbourdis AP, Fodor MD, Seiple IB, Su S, Baran PS, Feldman KS, Tepe JJ. J. Nat. Prod. 2012; 75: 980
    • 11e Chithanna S, Yang D. J. Org. Chem. 2019; 84: 1339
    • 11f Sandoval C, Lim N, Zhang H. Org. Lett. 2018; 20: 1252
    • 11g Pomplun S, Mohamed MY. H, Oelschlaegel T, Wellner C, Bergmann F. Angew. Chem. Int. Ed. 2019; 58: 3542
    • 12a Doody RS, Gavrilova SI, Sano M, Thomas RG, Aisen PS, Bachurin SO, Seely L, Hung D. Lancet 2008; 372: 207
    • 12b Steele JW, Gandy S. Autophagy 2013; 9: 617

      See books and recent reviews:
    • 13a Begue JP, Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine . Wiley; Hoboken: 2008
    • 13b Fluorine and Health. Molecular Imaging, Biomedical Materials and Pharmaceuticals. Tressaud A, Haufe G. Elsevier; Amsterdam: 2008
    • 13c Fluorinated Heterocyclic Compounds: Synthesis, Chemistry, and Applications. Petrov VA. Wiley; Hoboken: 2009
    • 13d Fluorine in Heterocyclic Chemistry . Nenajdenko VG. Springer; Berlin: 2014
    • 13e Prakash RV. Organofluorine Compounds in Biology and Medicine. Elsevier; Amsterdam: 2015
    • 13f Nenajdenko VG, Muzalevskiy VM, Shastin AV. Chem. Rev. 2015; 115: 973
    • 13g Hiyama T. In Organofluorine Compounds: Chemistry and Applications . Yamamoto H. Springer; Berlin: 2000. Chap. 5, 1370
    • 13h Chambers RD. Fluorine in Organic Chemistry . Blackwell; Oxford: 2004
    • 13i Kirsch P. Modern Fluoroorganic Chemistry: Synthesis Reactivity, Applications. Wiley-VCH; Weinheim: 2004
    • 13j Politanskaya LV, Selivanova GA, Panteleeva EV, Tretyakov EV, Platonov VE, Nikul’shin PV, Vinogradov AS, Zonov YV, Karpov VM, Mezhenkova TV, Vasilyev AV, Koldobskii AB, Shilova OS, Morozova SM, Burgart YV, Shchegolkov EV, Saloutin VI, Sokolov VB, Aksinenko AYu, Nenajdenko VG, Moskalik MYu, Astakhova VV, Shainyan BA, Tabolin AA, Ioffe SL, Muzalevskiy VM, Balenkova ES, Shastin AV, Tyutyunov AA, Boiko VE, Igumnov SM, Dilman AD, Adonin NYu, Bardin VV, Masoud SM, Vorobyeva DV, Osipov SN, Nosova EV, Lipunova GN, Charushin VN, Prima DO, Makarov AG, Zibarev AV, Trofimov BA, Sobenina LN, Belyaeva KV, Sosnovskikh VYa, Obydennov DL, Usachev SA. Russ. Chem. Rev. 2019; 88: 425
    • 13k Yang X, Wu T, Phipps RJ, Toste FD. Chem. Rev. 2015; 115: 826
    • 13l Yerien DE, Barata-Vallejo S, Postigo A. Chem. Eur. J. 2017; 23: 14676
    • 13m Meanwell NA. J. Med. Chem. 2018; 61: 5822
    • 13n Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
    • 14a Likhosherstov AM, Filippova OV, Peresada VP, Kryzhanovskii SA, Vititnova MB, Kaverina NV, Reznikov KM. Pharm. Chem. J. 2003; 37: 6
    • 14b Peresada VP, Medvedev OS, Likhosherstov AM, Skoldinov AP. Khim.-Farm. Zh. 1987; 21: 1054
    • 14c Negoro T, Murata M, Ueda S, Fujitani B, Ono Y, Kuromiya A, Komiya M, Suzuki K, Matsumoto J.-I. J. Med. Chem. 1998; 41: 4118
    • 16a Shevchenko NE, Balenkova ES, Röschenthaler G.-V, Nenajdenko VG. Synthesis 2010; 120
    • 16b Shevchenko NE, Nenajdenko VG, Röschenthaler G.-V. J. Fluorine Chem. 2008; 129: 390
    • 16c Shmatova OI, Shevchenko NE, Nenajdenko VG. Eur. J. Org. Chem. 2015; 6479
    • 16d Gulevich AV, Shevchenko NE, Balenkova ES, Röschenthaler G.-V, Nenajdenko VG. Synlett 2009; 403