Synthesis 2022; 54(02): 355-368
DOI: 10.1055/a-1638-2478
feature

Kinetic Resolution by Lithiation: Highly Enantioselective Synthesis of Substituted Dihydrobenzoxazines and Tetrahydroquinoxalines

Ashraf El-Tunsi
a   Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
,
a   Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
,
Song-Hee Yeo
a   Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
,
Joshua D. Priest
a   Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
,
Anthony Choi
a   Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
,
Carolin M. Kobras
b   The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
,
Soneni Ndlovu
a   Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
,
Ilaria Proietti Silvestri
c   Liverpool ChiroChem, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
,
Andrew K. Fenton
b   The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
,
Iain Coldham
a   Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
› Institutsangaben
This work was supported by the Engineering and Physical Sciences Research Council (EPSRC, grant EP/R024294/1), the University of Sheffield, the Ministry of Higher Education and Scientific Research Libya, the Royal Society (Short Industry Fellowship SIF\R2\202031), and the Medical Research Council (MRC, grant MR/S009280/1).


Abstract

Kinetic resolution provided a highly enantioselective method to access a range of 3-aryl-3,4-dihydro-2H-1,4-benzoxazines using n-butyllithium and the chiral ligand sparteine. The enantioenrichment remained high on removing the tert-butoxycarbonyl (Boc) protecting group. The intermediate organolithium undergoes ring opening to an enamine. The kinetic resolution was extended to give enantiomerically enriched substituted 1,2,3,4-tetrahydroquinoxalines and was applied to the synthesis of an analogue of the antibiotic levofloxacin that was screened for its activity against the human pathogen Streptococcus pneumoniae.

Supporting Information



Publikationsverlauf

Eingereicht: 20. August 2021

Angenommen: 06. September 2021

Accepted Manuscript online:
06. September 2021

Artikel online veröffentlicht:
26. Oktober 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Anderson VR, Perry CM. Drugs 2008; 68: 535
  • 2 Higuchi RI, Thompson AW, Chen J.-H, Caferro TR, Cummings ML, Deckhut CP, Adams ME, Tegley CM, Edwards JP, López FJ, Kallel EA, Karanewsky DS, Schrader WT, Marschke KB, Zhi L. Bioorg. Med. Chem. Lett. 2007; 17: 5442
  • 3 Koini EN, Papazafiri P, Vassilopoulos A, Koufaki M, Horváth Z, Koncz I, Virág L, Papp GJ, Varró A, Calogeropoulou T. J. Med. Chem. 2009; 52: 2328
    • 4a Eary CT, Jones ZS, Groneberg RD, Burgess LE, Mareska DA, Drew MD, Blake JF, Laird ER, Balachari D, O’Sullivan M, Allen A, Marsh V. Bioorg. Med. Chem. Lett. 2007; 17: 2608
    • 4b Wang A, Prouty CP, Pelton PD, Yong M, Demarest KT, Murray WV, Kuo G.-H. Bioorg. Med. Chem. Lett. 2010; 20: 1432
    • 5a Smist M, Kwiecien H. Curr. Org. Synth. 2014; 11: 676
    • 5b Ilas J, Anderluh PS, Dolenc MS, Kikelj D. Tetrahedron 2005; 61: 7325
    • 5c Achari B, Mandal SB, Dutta PK, Chowdhury C. Synlett 2004; 2449
  • 6 Zumbrägel N, Machui P, Nonnhoff J, Gröger H. J. Org. Chem. 2019; 84: 1440
  • 7 Shen H.-C, Wu Y.-F, Zhang Y, Fan L.-F, Han Z.-Y, Gong L.-Z. Angew. Chem. Int. Ed. 2018; 57: 2372
    • 8a Korolyova MA, Vakarov SA, Kozhevnikov DN, Gruzdev DA, Levit GL, Krasnov VP. Eur. J. Org. Chem. 2018; 4577
    • 8b Vakarov SA, Korolyova MA, Gruzdev DA, Pervova MG, Levit GL, Krasnov VP. Russ. Chem. Bull. 2019; 68: 1257
    • 8c Vakarov SA, Gruzdev DA, Chulakov EN, Levit GL, Krasnov VP. Russ. Chem. Bull. 2019; 68: 841
  • 9 Saito K, Miyashita H, Akiyama T. Chem. Commun. 2015; 51: 16648
  • 10 Cochrane EJ, Leonori D, Hassall LA, Coldham I. Chem. Commun. 2014; 50: 9910
  • 11 Carter N, Li X, Reavey L, Meijer AJ. H. M, Coldham I. Chem. Sci. 2018; 9: 1352
  • 12 Choi A, El-Tunsi A, Wang Y, Meijer AJ. H. M, Li J, Li X, Proietti Silvestri I, Coldham I. Chem. Eur. J. 2021; 27: 11670
  • 13 For a review, see: Kasten K, Seling N, O’Brien P. Org. React. 2019; 100: 255
  • 14 Selectivity factor, S = krel = ln[(1 – C)(1 – ee)]/ln[(1 – C)(1 + ee)], where C = conversion and ee = enantiomeric excess; see: Kagan HB, Fiaud JC. Top. Stereochem. 1988; 18: 249
    • 15a Ten Brink RE, Merchant KM, McCarthy TJ. WO Patent 03/089438A1, 2003

    • For spectroscopic data for compound 1a, see:
    • 15b Jangili P, Kashanna J, Das B. Tetrahedron Lett. 2013; 54: 3453

      For related ring opening of lithiated intermediates, see:
    • 16a Babudri F, Florio S, Reho A, Trapani G. J. Chem. Soc., Perkin Trans. 1 1984; 1949
    • 16b Garrido F, Mann A, Wermuth C.-G. Tetrahedron Lett. 1997; 38: 63
    • 16c Lautens M, Fillion E, Sampat M. J. Org. Chem. 1997; 62: 7080
    • 16d Lu YJ, Hu B, Prashad M, Kabadi S, Repic O, Blacklock TJ. J. Heterocycl. Chem. 2006; 43: 1125
    • 16e Corbet BP, Matlock JV, Mas-Roselló J, Clayden J. C. R. Chim. 2017; 20: 634
    • 16f Firth JD, O’Brien P, Ferris L. J. Org. Chem. 2017; 82: 7023
  • 17 CCDC 2093628 [(R)-1b], CCDC 2093629 [(R)-1c], and CCDC 2093630 [(R)-4a] contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
    • 18a Bailey WF, Beak P, Kerrick ST, Ma S, Wiberg KB. J. Am. Chem. Soc. 2002; 124: 1889
    • 18b Stead D, Carbone G, O’Brien P, Campos KR, Coldham I, Sanderson A. J. Am. Chem. Soc. 2010; 132: 7260
    • 18c Lin W, Zhang K.-F, Baudoin O. Nat. Catal. 2019; 2: 882

      Representative data for 3ae:
    • 19a Gao K, Yu C.-B, Wang D.-S, Zhou Y.-G. Adv. Synth. Catal. 2012; 354: 483
    • 19b Hu J, Wang D, Zheng Z, Hu X. Chin. J. Chem. 2012; 30: 2664
    • 19c Fleischer S, Zhou S, Werkmeister S, Junge K, Beller M. Chem. Eur. J. 2013; 19: 4997
    • 19d Liu X.-W, Wang C, Yan Y, Wang Y.-Q, Sun J. J. Org. Chem. 2013; 78: 6276
    • 19e Qin J, Chen F, He Y.-M, Fan Q.-H. Org. Chem. Front. 2014; 1: 952
    • 19f Zhang Y, Zhao R, Bao RL.-Y, Shi L. Eur. J. Org. Chem. 2015; 3344
    • 20a McKinney AM, Jackson KR, Salvatore RN, Savrides E.-M, Edattel MJ, Gavin T. J. Heterocycl. Chem. 2005; 42: 1031
    • 20b Rueping M, Tato F, Schoepke FR. Chem. Eur. J. 2010; 16: 2688
    • 20c Ji Y.-G, Wei K, Liu T, Wu L, Zhang W.-H. Adv. Synth. Catal. 2017; 359: 933
  • 21 Fu KP, Lafredo SC, Foleno B, Isaacson DM, Barrett JF, Tobia AJ, Rosenthale ME. Antimicrob. Agents Chemother. 1992; 36: 860
  • 22 Yu X, Zhang M, Annamalai T, Bansod P, Narula G, Tse-Dinh Y.-C, Sun D. Eur. J. Med. Chem. 2017; 125: 515
  • 23 Schriewer M, Grohe K, Zeiler H.-J, Metzger KG. DE Patent 3543513A1, 1987
    • 24a Lister PD, Sanders CC. J. Antimicrob. Chemother. 1999; 43: 79
    • 24b Lacy MK, Lu W, Xu X, Tessier PR, Nicolau DP, Quintiliani R, Nightingale CH. Antimicrob. Agents Chemother. 1999; 43: 672
    • 24c Zhanel GG, Walters M, Laing N, Hoban DJ. J. Antimicrob. Chemother. 2001; 47: 435
    • 24d Lister PD. Diagn. Microbiol. Infect. Dis. 2002; 44: 43
    • 24e Garrison MW. J. Antimicrob. Chemother. 2003; 52: 503
    • 24f Lanie JA, Ng W.-L, Kazmierczak KM, Andrzejewski TM, Davidsen TM, Wayne KJ, Tettelin H, Glass JI, Winkler ME. J. Bacteriol. 2007; 189: 38
  • 25 Aldred KJ, Kerns RJ, Osheroff N. Biochemistry 2014; 53: 1565
  • 26 Wei S, Feng X, Du H. Org. Biomol. Chem. 2016; 14: 8026
  • 27 Rueping M, Antonchick AP, Theissmann T. Angew. Chem. Int. Ed. 2006; 45: 6751
  • 28 Figueras J. J. Org. Chem. 1966; 31: 803
  • 29 Chen Q.-A, Wang D.-S, Zhou Y.-G, Duan Y, Fan H.-J, Yang Y, Zhang Z. J. Am. Chem. Soc. 2011; 133: 6126