Thromb Haemost 2009; 102(06): 1117-1134
DOI: 10.1160/TH09-07-0472
Theme Issue Article
Schattauer GmbH

The contribution of systems biology and reverse genetics to the understanding of Kaposi’s sarcoma-associated herpesvirus pathogenesis in endothelial cells

Michael Stürzl
1   Division of Molecular and Experimental Surgery, Department of Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
,
Andreas Konrad
1   Division of Molecular and Experimental Surgery, Department of Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
,
Khaled R. Alkharsah
2   Department of Virology, Medical School Hannover, Hannover, Germany
,
Ramona Jochmann
1   Division of Molecular and Experimental Surgery, Department of Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
,
Mathias Thurau
1   Division of Molecular and Experimental Surgery, Department of Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
,
Gaby Marquardt
1   Division of Molecular and Experimental Surgery, Department of Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
,
Thomas F. Schulz
2   Department of Virology, Medical School Hannover, Hannover, Germany
› Author Affiliations
Financial support: This work was supported by grants of the Deutsche Forschungsgemeinschaft (DFG-SPP 1130 to MS and TFS; DFG-SFB 566 to TFS; DFG-GK 1071 and DFG 317/2-1 to MS), the Interdisciplinary Center for Clinical Research (IZKF) of the University of Erlangen-Nuremberg (to M.S) and the European Union (FP6 Integrated project INCALSHC- CT-2005-018704 to TFS).
Further Information

Publication History

Received: 22 July 2009

Accepted after minor revision: 05 November 2009

Publication Date:
28 November 2017 (online)

Summary

Kaposi’s sarcoma-associated herpesvirus (KSHV) / human herpesvirus-8 is the causative agent of the endothelial cell-derived tumour Kaposi’s sarcoma. Herpesviruses possess large complex genomes which provide many options to regulate cellular physiology during the viral life cycle and in the course of tumourigenicity. Novel techniques of systems biology and reverse genetics are increasingly applied to dissect the complex interaction of KSHV with endothelial cells. This review will outline novel results and pitfalls of these technologies in the elucidation of KSHV pathogenicity.

 
  • References

  • 1 Chang Y. et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 1994; 266: 1865-1869.
  • 2 Buonaguro FM. et al. Herpesvirus-like DNA sequences detected in endemic, classic, iatrogenic and epidemic Kaposi’s sarcoma (KS) biopsies. Int J Cancer 1996; 65: 25-28.
  • 3 Carbone A, Gaidano G. HHV-8-positive body-cavity-based lymphoma: a novel lymphoma entity. Br J Haematol 1997; 97: 515-522.
  • 4 Moore PS, Chang Y. Detection of herpesvirus-like DNA sequences in Kaposi’s sarcoma in patients with and without HIV infection. N Engl J Med 1995; 332: 1181-1185.
  • 5 Strauchen JA. et al. Body cavity-based malignant lymphoma containing Kaposi sarcoma-associated herpesvirus in an HIV-negative man with previous Kaposi sarcoma. Ann Intern Med 1996; 125: 822-825.
  • 6 Stürzl M. et al. Human herpesvirus-8 and Kaposi’s sarcoma: relationship with the multistep concept of tumorigenesis. Adv Cancer Res 2001; 81: 125-159.
  • 7 Gill J. et al. Prospective study of the effects of antiretroviral therapy on Kaposi sarcoma--associated herpesvirus infection in patients with and without Kaposi sarcoma. J Acquir Immune Defic Syndr 2002; 31: 384-390.
  • 8 Dittmer DP, Krown SE. Targeted therapy for Kaposi’s sarcoma and Kaposi’s sarcoma-associated herpesvirus. Curr Opin Oncol 2007; 19: 452-457.
  • 9 Trattner A. et al. The appearance of Kaposi sarcoma during corticosteroid therapy. Cancer 1993; 72: 1779-1783.
  • 10 Schena M. et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995; 270: 467-470.
  • 11 Smith RD. et al. Rapid quantitative measurements of proteomes by Fourier transform ion cyclotron resonance mass spectrometry. Electrophoresis 2001; 22: 1652-1668.
  • 12 Unlu M. et al. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 1997; 18: 2071-2077.
  • 13 Gavin AC. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002; 415: 141-147.
  • 14 Luo Y. et al. Mammalian two-hybrid system: a complementary approach to the yeast two-hybrid system. Biotechniques 1997; 22: 350-352.
  • 15 Rigaut G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 1999; 17: 1030-1032.
  • 16 Uetz P. et al. A comprehensive analysis of proteinprotein interactions in Saccharomyces cerevisiae. Nature 2000; 403: 623-627.
  • 17 Ziauddin J, Sabatini DM. Microarrays of cells expressing defined cDNAs. Nature 2001; 411: 107-110.
  • 18 Renne R. et al. Lytic growth of Kaposi’s sarcomaassociated herpesvirus (human herpesvirus 8) in culture. Nat Med 1996; 02: 342-346.
  • 19 Zhong W. et al. Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc Natl Acad Sci USA 1996; 93: 6641-6646.
  • 20 Song MJ. et al. Transcription activation of polyadenylated nuclear rna by rta in human herpesvirus 8/Kaposi’s sarcoma-associated herpesvirus. J Virol 2001; 75: 3129-3140.
  • 21 Staskus KA. et al. Kaposi’s sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J Virol 1997; 71: 715-719.
  • 22 Stürzl M. et al. Expression of HHV-8 latency-associated T0.7 RNA in spindle cells and endothelial cells of AIDS-associated, classical and African Kaposi’s sarcoma. Int J Cancer 1997; 72: 68-71.
  • 23 Sarid R. et al. Transcription mapping of the Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) genome in a body cavity-based lymphoma cell line (BC-1). J Virol 1998; 72: 1005-1012.
  • 24 Jenner RG. et al. Kaposi’s sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J Virol 2001; 75: 891-902.
  • 25 Paulose-Murphy M. et al. Transcription program of human herpesvirus 8 (kaposi’s sarcoma-associated herpesvirus). J Virol 2001; 75: 4843-4853.
  • 26 Nakamura H. et al. Global changes in Kaposi’s sarcoma-associated virus gene expression patterns following expression of a tetracycline-inducible Rta transactivator. J Virol 2003; 77: 4205-4220.
  • 27 Krishnan HH. et al. Concurrent expression of latent and a limited number of lytic genes with immune modulation and antiapoptotic function by Kaposi’s sarcoma-associated herpesvirus early during infection of primary endothelial and fibroblast cells and subsequent decline of lytic gene expression. J Virol 2004; 78: 3601-3620.
  • 28 Ishido S. et al. Inhibition of natural killer cell-mediated cytotoxicity by Kaposi’s sarcoma-associated herpesvirus K5 protein. Immunity 2000; 13: 365-374.
  • 29 Stürzl M. et al. Expression of K13/v-FLIP gene of human herpesvirus 8 and apoptosis in Kaposi’s sarcoma spindle cells. J Natl Cancer Inst 1999; 91: 1725-1733.
  • 30 Poole LJ. et al. Altered patterns of cellular gene expression in dermal microvascular endothelial cells infected with Kaposi’s sarcoma-associated herpesvirus. J Virol 2002; 76: 3395-3420.
  • 31 Moses AV. et al. Long-term infection and transformation of dermal microvascular endothelial cells by human herpesvirus 8. J Virol 1999; 73: 6892-6902.
  • 32 Moses AV. et al. Kaposi’s sarcoma-associated herpesvirus-induced upregulation of the c-kit proto-oncogene, as identified by gene expression profiling, is essential for the transformation of endothelial cells. J Virol 2002; 76: 8383-8399.
  • 33 Raggo C. et al. Novel cellular genes essential for transformation of endothelial cells by Kaposi’s sarcoma-associated herpesvirus. Cancer Res 2005; 65: 5084-5095.
  • 34 Akula SM. et al. Integrin alpha3beta1 (CD 49c/29) is a cellular receptor for Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. Cell 2002; 108: 407-419.
  • 35 Naranatt PP. et al. Kaposi’s sarcoma-associated herpesvirus induces the phosphatidylinositol 3-kinase-PKC-zeta-MEK-ERK signaling pathway in target cells early during infection: implications for infectivity. J Virol 2003; 77: 1524-1539.
  • 36 Naranatt PP. et al. Host gene induction and transcriptional reprogramming in Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8)-infected endothelial, fibroblast, and B cells: insights into modulation events early during infection. Cancer Res 2004; 64: 72-84.
  • 37 Naschberger E. et al. Nuclear factor-kappaB motif and interferon-alpha-stimulated response element cooperate in the activation of guanylate-binding protein-1 expression by inflammatory cytokines in endothelial cells. Biochem J 2004; 379: 409-420.
  • 38 Guenzi E. et al. The guanylate binding protein-1 GTPase controls the invasive and angiogenic capability of endothelial cells through inhibition of MMP-1 expression. Embo J 2003; 22: 3772-3782.
  • 39 Guenzi E. et al. The helical domain of GBP-1 mediates the inhibition of endothelial cell proliferation by inflammatory cytokines. Embo J 2001; 20: 5568-5577.
  • 40 Weinländer K. et al. Guanylate binding protein-1 inhibits spreading and migration of endothelial cells through induction of integrin alpha4 expression. FASEB J 2008; 22: 4168-4178.
  • 41 Naschberger E. et al. Angiostatic immune reaction in colorectal carcinoma: Impact on survival and perspectives for antiangiogenic therapy. Int J Cancer 2008; 123: 2120-2129.
  • 42 Cornali E. et al. Vascular endothelial growth factor regulates angiogenesis and vascular permeability in Kaposi’s sarcoma. Am J Pathol 1996; 149: 1851-1869.
  • 43 Thewes M. et al. The urokinase plasminogen activator system in angiosarcoma, Kaposi’s sarcoma, granuloma pyogenicum, and angioma: an immunohistochemical study. Int J Dermatol 2000; 39: 188-191.
  • 44 Babon JJ. et al. The structure of SOCS3 reveals the basis of the extended SH2 domain function and identifies an unstructured insertion that regulates stability. Mol Cell 2006; 22: 205-216.
  • 45 Croker BA. et al. SOCS3 negatively regulates IL-6 signaling in vivo. Nat Immunol 2003; 04: 540-545.
  • 46 Croker BA. et al. SOCS3 is a critical physiological negative regulator of G-CSF signaling and emergency granulopoiesis. Immunity 2004; 20: 153-165.
  • 47 Dupin N. et al. Distribution of human herpesvirus-8 latently infected cells in Kaposi’s sarcoma, multicentric Castleman’s disease, and primary effusion lymphoma. Proc Natl Acad Sci USA 1999; 96: 4546-4551.
  • 48 Stürzl M. et al. Kaposi’s sarcoma: a review of gene expression and ultrastructure of KS spindle cells in vivo. AIDS Res Hum Retroviruses 1992; 08: 1753-1763.
  • 49 Weninger W. et al. Expression of vascular endothelial growth factor receptor-3 and podoplanin suggests a lymphatic endothelial cell origin of Kaposi’s sarcoma tumor cells. Lab Invest 1999; 79: 243-251.
  • 50 Wang HW. et al. Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat Genet 2004; 36: 687-693.
  • 51 Petrova TV. et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J 2002; 21: 4593-4599.
  • 52 Hong YK. et al. Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nat Genet 2004; 36: 683-685.
  • 53 Vart RJ. et al. Kaposi’s sarcoma-associated herpesvirus-encoded interleukin-6 and G-protein-coupled receptor regulate angiopoietin-2 expression in lymphatic endothelial cells. Cancer Res 2007; 67: 4042-4051.
  • 54 Gale NW. et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell 2002; 03: 411-423.
  • 55 Fiedler U. et al. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med 2006; 12: 235-239.
  • 56 Makinen T. et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med 2001; 07: 199-205.
  • 57 Veikkola T. et al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J 2001; 20: 1223-1231.
  • 58 Glaunsinger BA, Ganem DE. Messenger RNA turnover and its regulation in herpesviral infection. Adv Virus Res 2006; 66: 337-394.
  • 59 Chandriani S, Ganem D. Host transcript accumulation during lytic KSHV infection reveals several classes of host responses. PLoS ONE 2007; 02: e811.
  • 60 Polson AG. et al. Modulation of host gene expression by the constitutively active G protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus. Cancer Res 2002; 62: 4525-4530.
  • 61 Herndier BG. et al. Characterization of a human Kaposi’s sarcoma cell line that induces angiogenic tumors in animals. Aids 1994; 08: 575-581.
  • 62 Glaunsinger B, Ganem D. Highly selective escape from KSHV-mediated host mRNA shutoff and its implications for viral pathogenesis. J Exp Med 2004; 200: 391-398.
  • 63 Chaudhary PM. et al. Modulation of the NF-kappa B pathway by virally encoded death effector domainscontaining proteins. Oncogene 1999; 18: 5738-5746.
  • 64 Djerbi M. et al. The inhibitor of death receptor signaling, FLICE-inhibitory protein defines a new class of tumor progression factors. J Exp Med 1999; 190: 1025-1032.
  • 65 Efklidou S. et al. vFLIP from KSHV inhibits anoikis of primary endothelial cells. J Cell Sci 2008; 121: 450-457.
  • 66 Konrad A. et al. A systems biology approach to identify the combination effects of human herpesvirus 8 genes on NF-kappaB activation. J Virol 2009; 83: 2563-2574.
  • 67 Sun Q. et al. The human herpes virus 8-encoded viral FLICE inhibitory protein protects against growth factor withdrawal-induced apoptosis via NF-kappa B activation. Blood 2003; 101: 1956-1961.
  • 68 Mehrad B. et al. Chemokines as mediators of angiogenesis. Thromb Haemost 2007; 97: 755-762.
  • 69 Sakakibara S. et al. Gene regulation and functional alterations induced by Kaposi’s sarcoma-associated herpesvirus-encoded ORFK13/vFLIP in endothelial cells. J Virol 2009; 83: 2140-2153.
  • 70 Thurau M. et al. Viral inhibitor of apoptosis vFLIP/K13 protects endothelial cells against superoxide-induced cell death. J Virol 2009; 83: 598-611.
  • 71 Cocchi F. et al. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 1995; 270: 1811-1815.
  • 72 Blasig C. et al. Monocytes in Kaposi’s sarcoma lesions are productively infected by human herpesvirus 8. J Virol 1997; 71: 7963-7968.
  • 73 Stürzl M. et al. Expression of platelet-derived growth factor and its receptor in AIDS-related Kaposi sarcoma in vivo suggests paracrine and autocrine mechanisms of tumor maintenance. Proc Natl Acad Sci USA 1992; 89: 7046-7050.
  • 74 Zhu FX. et al. Virion proteins of Kaposi’s sarcomaassociated herpesvirus. J Virol 2005; 79: 800-811.
  • 75 Nealon K. et al. Lytic replication of Kaposi’s sarcoma-associated herpesvirus results in the formation of multiple capsid species: isolation and molecular characterization of A, B, and C capsids from a gammaherpesvirus. J Virol 2001; 75: 2866-2878.
  • 76 Russo JJ. et al. Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci USA 1996; 93: 14862-14867.
  • 77 Rozen R. et al. Virion-wide protein interactions of Kaposi’s sarcoma-associated herpesvirus. J Virol 2008; 82: 4742-4750.
  • 78 Si H. et al. Proteomic analysis of the Kaposi’s sarcoma-associated herpesvirus terminal repeat element binding proteins. J Virol 2006; 80: 9017-9030.
  • 79 Ballestas ME, Kaye KM. Kaposi’s sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mediates episome persistence through cis-acting terminal repeat (TR) sequence and specifically binds TR DNA. J Virol 2001; 75: 3250-3258.
  • 80 Si H. et al. Kaposi’s sarcoma-associated herpesvirus-encoded LANA can interact with the nuclear mitotic apparatus protein to regulate genome maintenance and segregation. J Virol 2008; 82: 6734-6746.
  • 81 Kaul R. et al. Protein complexes associated with the Kaposi’s sarcoma-associated herpesvirus-encoded LANA. Virology 2007; 364: 317-329.
  • 82 Ma L. et al. Mitosin/CENP-F in mitosis, transcriptional control, and differentiation. J Biomed Sci 2006; 13: 205-213.
  • 83 Uetz P. et al. Herpesviral protein networks and their interaction with the human proteome. Science 2006; 311: 239-242.
  • 84 Chen J. et al. Genome-wide identification of binding sites for Kaposi’s sarcoma-associated herpesvirus lytic switch protein, RTA. Virology 2009; 386: 290-302.
  • 85 Ellison TJ. et al. A comprehensive analysis of recruitment and transactivation potential of K-Rta and K-bZIP during reactivation of Kaposi’s sarcoma-associated herpesvirus. Virology 2009; 387: 76-88.
  • 86 Sander G. et al. Intracellular Localization Map of HHV-8 Proteins. J Virol 2008; 82: 1908-1922.
  • 87 Simpson JC. et al. Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing. EMBO Rep 2000; 01: 287-292.
  • 88 Salsman J. et al. Genome-wide screen of three herpesviruses for protein subcellular localization and alteration of PML nuclear bodies. PLoS Pathog 2008; 04: e1000100.
  • 89 Mathas S. et al. c-FLIP mediates resistance of Hodgkin/Reed-Sternberg cells to death receptor-induced apoptosis. J Exp Med 2004; 199: 1041-1052.
  • 90 Niikura Y. et al. Monitoring of caspase-8/FLICE processing and activation upon Fas stimulation with novel antibodies directed against a cleavage site for caspase-8 and its substrate, FLICE-like inhibitory protein (FLIP). J Biochem (Tokyo) 2002; 132: 53-62.
  • 91 Matta H. et al. A nuclear role for Kaposi’s sarcomaassociated herpesvirus-encoded K13 protein in gene regulation. Oncogene 2008; 27: 5243-5253.
  • 92 Katano H. et al. Expression and localization of human herpesvirus 8-encoded proteins in primary effusion lymphoma, Kaposi’s sarcoma, and multicentric Castleman’s disease. Virology 2000; 269: 335-344.
  • 93 Wu FY. et al. Origin-independent assembly of Kaposi’s sarcoma-associated herpesvirus DNA replication compartments in transient cotransfection assays and association with the ORF-K8 protein and cellular PML. J Virol 2001; 75: 1487-1506.
  • 94 Keller SA. et al. Inhibition of NF-kappaB induces apoptosis of KSHV-infected primary effusion lymphoma cells. Blood 2000; 96: 2537-2542.
  • 95 Sadagopan S. et al. Kaposi’s sarcoma-associated herpesvirus induces sustained NF-kappaB activation during de novo infection of primary human dermal microvascular endothelial cells that is essential for viral gene expression. J Virol 2007; 81: 3949-3968.
  • 96 Brown HJ. et al. NF-kappaB inhibits gammaherpesvirus lytic replication. J Virol 2003; 77: 8532-8540.
  • 97 Ye FC. et al. Kaposi’s sarcoma-associated herpesvirus latent gene vFLIP inhibits viral lytic replication through NF-kappaB-mediated suppression of the AP-1 pathway: a novel mechanism of virus control of latency. J Virol 2008; 82: 4235-4249.
  • 98 Keller SA. et al. NF-kappaB is essential for the progression of KSHV-and EBV-infected lymphomas in vivo. Blood 2006; 107: 3295-3302.
  • 99 Sgarbanti M. et al. A requirement for NF-kappaB induction in the production of replication-competent HHV-8 virions. Oncogene 2004; 23: 5770-5780.
  • 100 Brinkmann MM. et al. Activation of mitogen-activated protein kinase and NF-kappaB pathways by a Kaposi’s sarcoma-associated herpesvirus K15 membrane protein. J Virol 2003; 77: 9346-9358.
  • 101 Schwarz M, Murphy PM. Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor constitutively activates NF-kappa B and induces proinflammatory cytokine and chemokine production via a C-terminal signaling determinant. J Immunol 2001; 167: 505-513.
  • 102 Seo T. et al. Inhibition of nuclear factor kappaB activity by viral interferon regulatory factor 3 of Kaposi’s sarcoma-associated herpesvirus. Oncogene 2004; 23: 6146-6155.
  • 103 Lee BS. et al. Suppression of tetradecanoyl phorbol acetate-induced lytic reactivation of Kaposi’s sarcoma-associated herpesvirus by K1 signal transduction. J Virol 2002; 76: 12185-12199.
  • 104 Prakash O. et al. Activation of Src kinase Lyn by the Kaposi sarcoma-associated herpesvirus K1 protein: implications for lymphomagenesis. Blood 2005; 105: 3987-3994.
  • 105 Stürzl M. et al. High throughput screening of gene functions in Mammalian cells using reversely transfected cell arrays: review and protocol. Comb Chem High Throughput Screen 2008; 11: 159-172.
  • 106 Renne R. et al. Experimental transmission of Kaposi’s sarcoma-associated herpesvirus (KSHV/ HHV-8) to SIV-positive and SIV-negative rhesus macaques. J Med Primatol 2004; 33: 1-9.
  • 107 Parsons CH. et al. KSHV targets multiple leukocyte lineages during long-term productive infection in NOD/SCID mice. J Clin Invest 2006; 116: 1963-1973.
  • 108 Dittmer D. et al. Experimental transmission of Kaposi’s sarcoma-associated herpesvirus (KSHV/ HHV-8) to SCID-hu Thy/Liv mice. J Exp Med 1999; 190: 1857-1868.
  • 109 Foreman KE. et al. Injection of human herpesvirus-8 in human skin engrafted on SCID mice induces Kaposi’s sarcoma-like lesions. J Dermatol Sci 2001; 26: 182-193.
  • 110 Mutlu AD. et al. In vivo-restricted and reversible malignancy induced by human herpesvirus-8 KSHV: a cell and animal model of virally induced Kaposi’s sarcoma. Cancer Cell 2007; 11: 245-258.
  • 111 Schultz ER. et al. Characterization of two divergent lineages of macaque rhadinoviruses related to Kaposi’s sarcoma-associated herpesvirus. J Virol 2000; 74: 4919-4928.
  • 112 Greensill J, Schulz TF. Rhadinoviruses (gamma2-herpesviruses) of Old World primates: models for KSHV/HHV8-associated disease?. AIDS 2000; (14) Suppl (Suppl. 03) S11-19.
  • 113 Desrosiers RC. et al. A herpesvirus of rhesus monkeys related to the human Kaposi’s sarcoma-associated herpesvirus. J Virol 1997; 71: 9764-9769.
  • 114 Rose TM. et al. Identification of two homologs of the Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in retroperitoneal fibromatosis of different macaque species. J Virol 1997; 71: 4138-4144.
  • 115 Greensill J. et al. A chimpanzee rhadinovirus sequence related to Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8: increased detection after HIV-1 infection in the absence of disease. Aids 2000; 14: F129-135.
  • 116 Greensill J. et al. Two distinct gamma-2 herpesviruses in African green monkeys: a second gamma-2 herpesvirus lineage among old world primates?. J Virol 2000; 74: 1572-1577.
  • 117 Lacoste V. et al. KSHV-like herpesviruses in chimps and gorillas. Nature 2000; 407: 151-152.
  • 118 Lacoste V. et al. Simian homologues of human gamma-2 and betaherpesviruses in mandrill and drill monkeys. J Virol 2000; 74: 11993-11999.
  • 119 Alexander L. et al. The primary sequence of rhesus monkey rhadinovirus isolate 26-95: sequence similarities to Kaposi’s sarcoma-associated herpesvirus and rhesus monkey rhadinovirus isolate 17577. J Virol 2000; 74: 3388-3398.
  • 120 Searles RP. et al. Sequence and genomic analysis of a Rhesus macaque rhadinovirus with similarity to Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8. J Virol 1999; 73: 3040-3053.
  • 121 Mansfield KG. et al. Experimental infection of rhesus and pig-tailed macaques with macaque rhadinoviruses. J Virol 1999; 73: 10320-10328.
  • 122 Wong SW. et al. Induction of B cell hyperplasia in simian immunodeficiency virusinfected rhesus macaques with the simian homologue of Kaposi’s sarcomaassociated herpesvirus [In Process Citation]. J Exp Med 1999; 190: 827-840.
  • 123 An FQ. et al. Long-term-infected telomerase-immortalized endothelial cells: a model for Kaposi’s sarcoma-associated herpesvirus latency in vitro and in vivo. J Virol 2006; 80: 4833-4846.
  • 124 Boshoff C. et al. Establishing a KSHV+ cell line (BCP-1) from peripheral blood and characterizing its growth in Nod/SCID mice. Blood 1998; 91: 1671-1679.
  • 125 Staudt MR. et al. The tumor microenvironment controls primary effusion lymphoma growth in vivo. Cancer Res 2004; 64: 4790-4799.
  • 126 Wu W. et al. Inhibition of HHV-8/KSHV infected primary effusion lymphomas in NOD/SCID mice by azidothymidine and interferon-alpha. Leuk Res 2005; 29: 545-555.
  • 127 Jeong JH. et al. Tissue specificity of the Kaposi’s sarcoma-associated Herpesvirus latent nuclear antigen (LANA/orf73) promoter in transgenic mice. J Virology 2002; 76: 11024-11032.
  • 128 Fakhari FD. et al. The latency-associated nuclear antigen of Kaposi sarcoma-associated herpesvirus induces B cell hyperplasia and lymphoma. J Clin Invest 2006; 116: 735-742.
  • 129 Verschuren EW. et al. The role of p53 in suppression of KSHV cyclin-induced lymphomagenesis. Cancer Res 2004; 64: 581-589.
  • 130 Verschuren EW. et al. The oncogenic potential of Kaposi’s sarcoma-associated herpesvirus cyclin is exposed by p53 loss in vitro and in vivo. Cancer Cell 2002; 02: 229-241.
  • 131 Chugh P. et al. Constitutive NF-{kappa}B activation, normal Fas-induced apoptosis, and increased incidence of lymphoma in human herpes virus 8 K13 transgenic mice. Proc Natl Acad Sci USA 2005; 102: 12885-12890.
  • 132 Grisotto MG. et al. The human herpesvirus 8 chemokine receptor vGPCR triggers autonomous proliferation of endothelial cells. J Clin Invest 2006; 116: 1264-1273.
  • 133 Guo HG. et al. Kaposi’s sarcoma-like tumors in a human herpesvirus 8 ORF74 transgenic mouse. J Virol 2003; 77: 2631-2639.
  • 134 Jensen KK. et al. The human herpes virus 8-encoded chemokine receptor is required for angioproliferation in a murine model of Kaposi’s sarcoma. J Immunol 2005; 174: 3686-3694.
  • 135 Montaner S. et al. Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi’s sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell 2003; 03: 23-36.
  • 136 Yang TY. et al. Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi’s sarcoma. J Exp Med 2000; 191: 445-454.
  • 137 Prakash O. et al. Tumorigenesis and aberrant signaling in transgenic mice expressing the human herpesvirus-8 K1 gene. J Natl Cancer Inst 2002; 94: 926-935.
  • 138 Zhou FC. et al. Efficient infection by a recombinant Kaposi’s sarcoma-associated herpesvirus cloned in a bacterial artificial chromosome: application for genetic analysis. J Virol 2002; 76: 6185-6196.
  • 139 Lee H. et al. Identification of an immunoreceptor tyrosine-based activation motif of K1 transforming protein of Kaposi’s sarcoma-associated herpesvirus. Mol Cell Biol 1998; 18: 5219-5228.
  • 140 Lee H. et al. Deregulation of cell growth by the K1 gene of Kaposi’s sarcoma-associated herpesvirus. Nat Med 1998; 04: 435-440.
  • 141 Wang L. et al. Immortalization of primary endothelial cells by the K1 protein of Kaposi’s sarcomaassociated herpesvirus. Cancer Res 2006; 66: 3658-3666.
  • 142 Lee BS. et al. Structural analysis of the Kaposi’s sarcoma-associated herpesvirus K1 protein. J Virol 2003; 77: 8072-8086.
  • 143 Lagunoff M. et al. Immunoreceptor tyrosine-based activation motif-dependent signaling by Kaposi’s sarcoma-associated herpesvirus K1 protein: effects on lytic viral replication. J Virol 2001; 75: 5891-5898.
  • 144 Lagunoff M. et al. Deregulated signal transduction by the K1 gene product of Kaposi’s sarcoma-associated herpesvirus. Proc Natl Acad Sci USA 1999; 96: 5704-5709.
  • 145 Tomlinson CC, Damania B. The K1 protein of Kaposi’s sarcoma-associated herpesvirus activates the Akt signaling pathway. J Virol 2004; 78: 1918-1927.
  • 146 Wang L. et al. The Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) K1 protein induces expression of angiogenic and invasion factors. Cancer Res 2004; 64: 2774-2781.
  • 147 Moore PS. et al. Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science 1996; 274: 1739-1744.
  • 148 Parravicini C. et al. Differential viral protein expression in Kaposi’s sarcoma-associated herpesvirusinfected diseases: Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. Am J Pathol 2000; 156: 743-749.
  • 149 Burger R. et al. Human herpesvirus type 8 interleukin-6 homologue is functionally active on human myeloma cells. Blood 1998; 91: 1858-1863.
  • 150 Hoischen SH. et al. Human herpes virus 8 interleukin-6 homologue triggers gp130 on neuronal and hematopoietic cells. Eur J Biochem 2000; 267: 3604-3612.
  • 151 Jones KD. et al. Involvement of interleukin-10 (IL-10) and viral IL-6 in the spontaneous growth of Kaposi’s sarcoma herpesvirus-associated infected primary effusion lymphoma cells. Blood 1999; 94: 2871-2879.
  • 152 Aoki Y, Tosato G. Role of vascular endothelial growth factor/vascular permeability factor in the pathogenesis of Kaposi’s sarcoma-associated herpesvirus-infected primary effusion lymphomas. Blood 1999; 94: 4247-4254.
  • 153 Kovaleva M. et al. Abrogation of viral interleukin-6 (vIL-6)-induced signaling by intracellular retention and neutralization of vIL-6 with an anti-vIL-6 single-chain antibody selected by phage display. J Virol 2006; 80: 8510-8520.
  • 154 Chen L, Lagunoff M. The KSHV viral interleukin-6 is not essential for latency or lytic replication in BJAB cells. Virology 2007; 359: 425-435.
  • 155 Sathish N. et al. Kaposi’s sarcoma-associated herpesvirus ORF45 interacts with kinesin-2 transporting viral capsid-tegument complexes along microtubules. PLoS Pathog 2009; 05: e1000332.
  • 156 Zhu FX. et al. Functional characterization of Kaposi’s sarcoma-associated herpesvirus ORF45 by bacterial artificial chromosome-based mutagenesis. J Virol 2006; 80: 12187-12196.
  • 157 Abada R. et al. SIAH-1 interacts with the Kaposi’s sarcoma-associated herpesvirus-encoded ORF45 protein and promotes its ubiquitylation and proteasomal degradation. J Virol 2008; 82: 2230-2240.
  • 158 Zhu FX, King SM, Smith EJ. et al. A Kaposi’s sarcoma-associated herpesviral protein inhibits virus-mediated induction of type I interferon by blocking IRF-7 phosphorylation and nuclear accumulation. Proc Natl Acad Sci USA 2002; 99: 5573-5578.
  • 159 Sun R. et al. A viral gene that activates lytic cycle expression of Kaposi’s sarcoma-associated herpesvirus. Proc Natl Acad Sci USA 1998; 95: 10866-10871.
  • 160 Viejo-Borbolla A, Schulz TF. Kaposi’s sarcomaassociated herpesvirus (KSHV/HHV8): key aspects of epidemiology and pathogenesis. AIDS Rev 2003; 05: 222-229.
  • 161 Chang PJ. et al. Open reading frame 50 protein of Kaposi’s sarcoma-associated herpesvirus directly activates the viral PAN and K12 genes by binding to related response elements. J Virol 2002; 76: 3168-3178.
  • 162 Gwack Y. et al. Kaposi’s Sarcoma-associated herpesvirus open reading frame 50 stimulates the transcriptional activity of STAT3. J Biol Chem 2002; 277: 6438-6442.
  • 163 Liang Y. et al. The lytic switch protein of KSHV activates gene expression via functional interaction with RBP-Jkappa (CSL), the target of the Notch signaling pathway. Genes Dev 2002; 16: 1977-1989.
  • 164 Wang SE. et al. CCAAT/enhancer-binding protein-alpha is induced during the early stages of Kaposi’s sarcoma-associated herpesvirus (KSHV) lytic cycle reactivation and together with the KSHV replication and transcription activator (RTA) cooperatively stimulates the viral RTA, MTA, and PAN promoters. J Virol 2003; 77: 9590-9612.
  • 165 Deng H. et al. Auto-activation of the rta gene of human herpesvirus-8/Kaposi’s sarcoma-associated herpesvirus. J Gen Virol 2000; 81: 3043-3048.
  • 166 Xu Y. et al. A Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 ORF50 deletion mutant is defective for reactivation of latent virus and DNA replication. J Virol 2005; 79: 3479-3487.
  • 167 Gruffat H. et al. Kaposi’s sarcoma-associated herpesvirus (human herpesvirus-8) encodes a homologue of the Epstein-Barr virus bZip protein EB1. J Gen Virol 1999; 80: 557-561.
  • 168 Izumiya Y. et al. Kaposi’s sarcoma-associated herpesvirus K-bZIP is a coregulator of K-Rta: physical association and promoter-dependent transcriptional repression. J Virol 2003; 77: 1441-1451.
  • 169 Wang SE. et al. Role of CCAAT/enhancer-binding protein alpha (C/EBPalpha) in activation of the Kaposi’s sarcoma-associated herpesvirus (KSHV) lyticcycle replication-associated protein (RAP) promoter in cooperation with the KSHV replication and transcription activator (RTA) and RAP. J Virol 2003; 77: 600-623.
  • 170 Park J. et al. The K-bZIP protein from Kaposi’s sarcoma-associated herpesvirus interacts with p53 and represses its transcriptional activity. J Virol 2000; 74: 11977-11982.
  • 171 Wu FY. et al. Lytic replication-associated protein (RAP) encoded by Kaposi sarcoma-associated herpesvirus causes p21CIP-1-mediated G1 cell cycle arrest through CCAAT/enhancer-binding protein-alpha. Proc Natl Acad Sci USA 2002; 99: 10683-10688.
  • 172 Kato-Noah T. et al. Overexpression of the kaposi’s sarcoma-associated herpesvirus transactivator K-Rta can complement a K-bZIP deletion BACmid and yields an enhanced growth phenotype. J Virol 2007; 81: 13519-13532.
  • 173 Boyne JR, Colgan KJ, Whitehouse A. Recruitment of the complete hTREX complex is required for Kaposi’s sarcoma-associated herpesvirus intronless mRNA nuclear export and virus replication. PLoS Pathog 2008; 04: e1000194.
  • 174 Malik P. et al. The evolutionarily conserved Kaposi’s sarcoma-associated herpesvirus ORF57 protein interacts with REF protein and acts as an RNA export factor. J Biol Chem 2004; 279: 33001-33011.
  • 175 Majerciak V. et al. Targeted disruption of Kaposi’s sarcoma-associated herpesvirus ORF57 in the viral genome is detrimental for the expression of ORF59, K8alpha, and K8.1 and the production of infectious virus. J Virol 2007; 81: 1062-1071.
  • 176 Birkmann A. et al. Cell surface heparan sulfate is a receptor for human herpesvirus 8 and interacts with envelope glycoprotein K8.1. J Virol 2001; 75: 11583-11593.
  • 177 Wang FZ. et al. Human herpesvirus 8 envelope glycoprotein K8.1A interaction with the target cells involves heparan sulfate. J Virol 2001; 75: 7517-7527.
  • 178 Luna RE. et al. Kaposi’s sarcoma-associated herpesvirus glycoprotein K8.1 is dispensable for virus entry. J Virol 2004; 78: 6389-6398.
  • 179 Xu Y. et al. Evaluation of the lytic origins of replication of Kaposi’s sarcoma-associated virus/human herpesvirus 8 in the context of the viral genome. J Virol 2006; 80: 9905-9909.
  • 180 Davis MA. et al. Expression of human herpesvirus 8-encoded cyclin D in Kaposi’s sarcoma spindle cells. J Natl Cancer Inst 1997; 89: 1868-1874.
  • 181 Rainbow L. et al. The 222- to 234-kilodalton latent nuclear protein (LNA) of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) is encoded by orf73 and is a component of the latency-associated nuclear antigen. J Virol 1997; 71: 5915-5921.
  • 182 Thome M. et al. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 1997; 386: 517-521.
  • 183 Liu L. et al. The human herpes virus 8-encoded viral FLICE inhibitory protein physically associates with and persistently activates the Ikappa B kinase complex. J Biol Chem 2002; 277: 13745-13751.
  • 184 Guasparri I. et al. KSHV vFLIP is essential for the survival of infected lymphoma cells. J Exp Med 2004; 199: 993-1003.
  • 185 Grossmann C. et al. Activation of NF-kappaB by the latent vFLIP gene of Kaposi’s sarcoma-associated herpesvirus is required for the spindle shape of virusinfected endothelial cells and contributes to their proinflammatory phenotype. J Virol 2006; 80: 7179-7185.
  • 186 Ballestas ME. et al. Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 1999; 284: 641-644.
  • 187 Hu J. et al. The latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus supports latent DNA replication in dividing cells. J Virol 2002; 76: 11677-11687.
  • 188 Barbera AJ. et al. The nucleosomal surface as a docking station for Kaposi’s sarcoma herpesvirus LANA. Science 2006; 311: 856-861.
  • 189 Garber AC. et al. DNA binding and modulation of gene expression by the latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus. J Virol 2001; 75: 7882-7892.
  • 190 Piolot T. et al. Close but distinct regions of human herpesvirus 8 latency-associated nuclear antigen 1 are responsible for nuclear targeting and binding to human mitotic chromosomes. J Virol 2001; 75: 3948-3959.
  • 191 Viejo-Borbolla A. et al. A Domain in the C-terminal region of latency-associated nuclear antigen 1 of Kaposi’s sarcoma-associated Herpesvirus affects transcriptional activation and binding to nuclear heterochromatin. J Virol 2003; 77: 7093-7100.
  • 192 Friborg Jr. J. et al. p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 1999; 402: 889-894.
  • 193 Radkov SA. et al. The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene Hras transforms primary rat cells. Nat Med 2000; 06: 1121-1127.
  • 194 Krithivas A. et al. Protein interactions targeting the latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus to cell chromosomes. J Virol 2002; 76: 11596-11604.
  • 195 Krithivas A, Young DB, Liao G. et al. Human herpesvirus 8 LANA interacts with proteins of the mSin3 corepressor complex and negatively regulates EpsteinBarr virus gene expression in dually infected PEL cells. J Virol 2000; 74: 9637-9645.
  • 196 Shamay M. et al. Recruitment of the de novo DNA methyltransferase Dnmt3a by Kaposi’s sarcoma-associated herpesvirus LANA. Proc Natl Acad Sci USA 2006; 103: 14554-14559.
  • 197 Ottinger M. et al. Kaposi’s sarcoma-associated herpesvirus LANA-1 interacts with the short variant of BRD4 and releases cells from a BRD4- and BRD2/RING3-induced G1 cell cycle arrest. J Virol 2006; 80: 10772-10786.
  • 198 Platt GM. et al. Latent nuclear antigen of Kaposi’s sarcoma-associated herpesvirus interacts with RING3, a homolog of the Drosophila female sterile homeotic (fsh) gene. J Virol 1999; 73: 9789-9795.
  • 199 Ye FC. et al. Disruption of Kaposi’s sarcoma-associated herpesvirus latent nuclear antigen leads to abortive episome persistence. J Virol 2004; 78: 11121-11129.
  • 200 Li Q. et al. Genetic disruption of KSHV major latent nuclear antigen LANA enhances viral lytic transcriptional program. Virology 2008; 379: 234-244.
  • 201 Staudt MR, Dittmer DP. Promoter switching allows simultaneous transcription of LANA and K14/vGPCR of Kaposi’s sarcoma-associated herpesvirus. Virology 2006; 350: 192-205.
  • 202 Stedman W. et al. Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. Embo J 2008; 27: 654-666.
  • 203 Kang H, Lieberman PM. Cell cycle control of Kaposi’s sarcoma-associated herpesvirus latency transcription by CTCF-cohesin interactions. J Virol 2009; 83: 6199-6210.
  • 204 Choi JK. et al. Identification of the novel K15 gene at the rightmost end of the Kaposi’s sarcoma-associated herpesvirus genome. J Virol 2000; 74: 436-446.
  • 205 Glenn M. et al. Identification of a spliced gene from Kaposi’s sarcoma-associated herpesvirus encoding a protein with similarities to latent membrane proteins 1 and 2A of Epstein-Barr virus. J Virol 1999; 73: 6953-6963.
  • 206 Brinkmann MM. et al. Modulation of host gene expression by the K15 protein of Kaposi’s sarcoma-associated herpesvirus. J Virol 2007; 81: 42-58.