Thromb Haemost 2007; 97(05): 755-762
DOI: 10.1160/TH07-01-0040
Theme Issue Article
Schattauer GmbH

Chemokines as mediators of angiogenesis

Borna Mehrad
1   Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
,
Michael P. Keane
2   Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at University of California, Los Angeles, California, USA
,
Robert M. Strieter
1   Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
› Author Affiliations
Financial support: This work was supported by NIH grants HL73848 and an American Lung Association Career Investigator Award (Mehrad), AR055075 (Keane), and CA87879 and HL66027 (Strieter).
Further Information

Publication History

Received 21 January 2007

Accepted after revision 05 March 2007

Publication Date:
24 November 2017 (online)

Summary

Chemokines were originally described as cytokines that mediate leukocyte recruitment to sites of inflammation. Members of a subgroup of chemokines, the CXC family, also play a critical role in both physiologic and pathologic angiogenesis, including in the context of chronic inflammation, fibrosis, and malignancy.A unique feature of this family of cytokines is that, on the basis of their structure and receptor binding, individual ligands display either angiogenic or angiostatic biological activity in the regulation of angiogenesis. In this review, we summarize the key literature in this growing field.

 
  • References

  • 1 Belperio JA, Keane MP, Arenberg DA. et al. CXC chemokines in angiogenesis. J Leukoc Biol 2000; 68: 1-8.
  • 2 Strieter RM, Polverini PJ, Kunkel SL. et al. The functional role of the 'ELR' motif in CXC chemokinemediated angiogenesis. J Biol Chem 1995; 270: 27348-27357.
  • 3 Addison CL, Daniel TO, Burdick MD. et al. The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR(+) CXC chemokine-induced angiogenic activity. J Immunol 2000; 165: 5269-5277.
  • 4 Murdoch C, Monk PN, Finn A. Cxc Chemokine receptor expression on human endothelial cells. Cytokine 1999; 11: 704-712.
  • 5 Salcedo R, Resau JH, Halverson D. et al. Differential expression and responsiveness of chemokine receptors (CXCR1–3) by human microvascular endothelial cells and umbilical vein endothelial cells. Faseb J 2000; 14: 2055-2064.
  • 6 Heidemann J, Ogawa H, Dwinell MB. et al. Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2. J Biol Chem 2003; 278: 8508-8515.
  • 7 Devalaraja RM, Nanney LB, Du J. et al. Delayed wound healing in CXCR2 knockout mice. J Invest Dermatol 2000; 115: 234-244.
  • 8 Balkwill F. The molecular and cellular biology of the chemokines. J Viral Hepat 1998; 05: 1-14.
  • 9 Ehlert JE, Addison CA, Burdick MD. et al. Identification and partial characterization of a variant of human CXCR3 generated by posttranscriptional exon skipping. J Immunol 2004; 173: 6234-6240.
  • 10 Loetscher M, Loetscher P, Brass N. et al. Lymphocyte- specific chemokine receptor CXCR3: regulation, chemokine binding and gene localization. Eur J Immunol 1998; 28: 3696-3705.
  • 11 Luster AD, Cardiff RD, MacLean JA. et al. Delayed wound healing and disorganized neovascularization in transgenic mice expressing the IP-10 chemokine. Proc Assoc Am Physicians 1998; 110: 183-196.
  • 12 Rollins BJ. Chemokines. Blood 1997; 90: 909-928.
  • 13 Soto H, Wang W, Strieter RM. et al. The CC chemokine 6Ckine binds the CXC chemokine receptor CXCR3. Proc Natl Acad Sci USA 1998; 95: 8205-8210.
  • 14 Romagnani P, Annunziato F, Lasagni L. et al. Cell cycle-dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity. J Clin Invest 2001; 107: 53-63.
  • 15 Lasagni L, Francalanci M, Annunziato F. et al. An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med 2003; 197: 1537-1549.
  • 16 Balabanian K, Lagane B, Infantino S. et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem 2005; 280: 35760-35766.
  • 17 Burns JM, Summers BC, Wang Y. et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 2006; 203: 2201-2213.
  • 18 Yang J, Richmond A. The angiostatic activity of interferon- inducible protein-10/CXCL10 in human melanoma depends on binding to CXCR3 but not to glycosaminoglycan. Mol Ther 2004; 09: 846-855.
  • 19 Phillips RJ, Burdick MD, Lutz M. et al. The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am J Respir Crit Care Med 2003; 167: 1676-1686.
  • 20 Bachelder RE, Wendt MA, Mercurio AM. Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res 2002; 62: 7203-7206.
  • 21 Kijowski J, Baj-Krzyworzeka M, Majka M. et al. The SDF-1-CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect proliferation and survival in lymphohematopoietic cells. Stem Cells 2001; 19: 453-466.
  • 22 Salcedo R, Wasserman K, Young HA. et al. Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: In vivo neovascularization induced by stromal-derived factor-1alpha. Am J Pathol 1999; 154: 1125-1135.
  • 23 Muller A, Homey B, Soto H. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001; 410: 50-56.
  • 24 Schrader AJ, Lechner O, Templin M. et al. CXCR4/CXCL12 expression and signalling in kidney cancer. Br J Cancer 2002; 86: 1250-1256.
  • 25 Smith DR, Polverini PJ, Kunkel SL. et al. IL-8 mediated angiogenesis in human bronchogenic carcinoma. J Exp Med 1994; 179: 1409-1415.
  • 26 Arenberg DA, Kunkel SL, Polverini PJ. et al. Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice. J Clin Invest 1996; 97: 2792-2802.
  • 27 Arenberg DA, Kunkel SL, Polverini PJ. et al. Interferon- γ -inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. J Exp Med 1996; 184: 981-992.
  • 28 Arenberg DA, Zlotnick A, Strom SR. et al. The murine CC chemokine, 6C-kine, inhibits tumor growth and angiogenesis in a human lung cancer SCID mouse model. Cancer Immunol Immunother 2001; 49: 587-592.
  • 29 Salcedo R, Young HA, Ponce ML. et al. Eotaxin (CCL11) induces in vivo angiogenic responses by human CCR3+ endothelial cells. J Immunol 2001; 166: 7571-7578.
  • 30 Strasly M, Doronzo G, Capello P. et al. CCL16 activates an angiogenic program in vascular endothelial cells. Blood 2004; 103: 40-49.
  • 31 Galvez BG, Genis L, Matias-Roman S. et al. Membrane type 1-matrix metalloproteinase is regulated by chemokines monocyte-chemoattractant protein-1/ccl2 and interleukin-8/CXCL8 in endothelial cells during angiogenesis. J Biol Chem 2005; 280: 1292-1298.
  • 32 Weber KS, Nelson PJ, Grone HJ. et al. Expression of CCR2 by endothelial cells: implications for MCP-1 mediated wound injury repair and in vivo inflammatory activation of endothelium. Arterioscler Thromb Vasc Biol 1999; 19: 2085-2093.
  • 33 Goede V, Brogelli L, Ziche M. et al. Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1. Int J Cancer 1999; 82: 765-770.
  • 34 Salcedo R, Ponce ML, Young HA. et al. Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood 2000; 96: 34-40.
  • 35 Barcelos LS, Talvani A, Teixeira AS. et al. Production and in vivo effects of chemokines CXCL1–3/KC and CCL2/JE in a model of inflammatory angiogenesis in mice. Inflamm Res 2004; 53: 576-584.
  • 36 Stamatovic SM, Keep RF, Mostarica-Stojkovic M. et al. CCL2 regulates angiogenesis via activation of Ets-1 transcription factor. J Immunol 2006; 177: 2651-2661.
  • 37 Burger M, Burger JA, Hoch RC. et al. Point mutation causing constitutive signaling of CXCR2 leads to transforming activity similar to Kaposi's sarcoma herpesvirus-G protein- coupled receptor. J Immunol 1999; 163: 2017-2022.
  • 38 Gershengorn MC, Geras-Raaka E, Varma A. et al. Chemokines activate Kaposi's sarcoma-associated herpesvirus G protein- coupled receptor in mammalian cells in culture [see comments]. J Clin Invest 1998; 102: 1469-1472.
  • 39 Arvanitakis L, Geras-Raaka E, Varma A. et al. Human herpesvirus KSHV encodes a constitutively active G-protein- coupled receptor linked to cell proliferation [see comments]. Nature 1997; 385: 347-350.
  • 40 Bais C, Santomasso B, Coso O. et al. G-proteincoupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator [see comments] [published erratum in Nature 1998; 392: 210]. Nature 1998; 391: 86-89.
  • 41 Geras-Raaka E, Arvanitakis L, Bais C. et al. Inhibition of constitutive signaling of Kaposi's sarcomaassociated herpesvirus G protein-coupled receptor by protein kinases in mammalian cells in culture. J Exp Med 1998; 187: 801-806.
  • 42 Guo HG, Sadowska M, Reid W. et al. Kaposi's sarcoma- like tumors in a human herpesvirus 8 ORF74 transgenic mouse. J Virol 2003; 77: 2631-2639.
  • 43 Yang TY, Chen SC, Leach MW. et al. Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi's sarcoma [see comments]. J Exp Med 2000; 191: 445-454.
  • 44 Maussang D, Verzijl D, van Walsum M. et al. Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. Proc Natl Acad Sci USA 2006; 103: 13068-13073.
  • 45 Addison CL, Belperio JA, Burdick MD. et al. Overexpression of the duffy antigen receptor for chemokines (DARC) by NSCLC tumor cells results in increased tumor necrosis. BMC Cancer 2004; 04: 28
  • 46 Du J, Luan J, Liu H. et al. Potential role for Duffy antigen chemokine-binding protein in angiogenesis and maintenance of homeostasis in response to stress. J Leukoc Biol 2002; 71: 141-153.
  • 47 Shen H, Schuster R, Stringer KF. et al. The Duffy antigen/receptor for chemokines (DARC) regulates prostate tumor growth. Faseb J 2006; 20: 59-64.
  • 48 Wang J, Ou ZL, Hou YF. et al. Enhanced expression of Duffy antigen receptor for chemokines by breast cancer cells attenuates growth and metastasis potential. Oncogene 2006; 25: 7201-7211.
  • 49 Maione TE, Gray GS, Petro J. et al. Inhibition of angiogenesis by recombinant human platelet factor-4. Science 1990; 247: 77-79.
  • 50 Bikfalvi A. Platelet factor 4: an inhibitor of angiogenesis. Semin Thromb Hemost 2004; 30: 379-385.
  • 51 Gentilini G, Kirschbaum NE, Augustine JA. et al. Inhibition of human umbilical vein endothelial cell proliferation by the CXC chemokine, platelet factor 4 (PF4), is associated with impaired downregulation of p21(Cip1/WAF1). Blood 1999; 93: 25-33.
  • 52 Sulpice E, Bryckaert M, Lacour J. et al. Platelet factor 4 inhibits FGF2-induced endothelial cell proliferation via the extracellular signal-regulated kinase pathway but not by the phosphatidylinositol 3-kinase pathway. Blood 2002; 100: 3087-3094.
  • 53 Perollet C, Han ZC, Savona C. et al. Platelet factor 4 modulates fibroblast growth factor 2 (FGF-2) activity and inhibits FGF-2 dimerization. Blood 1998; 91: 3289-3299.
  • 54 Bikfalvi A, Gimenez-Gallego G. The control of angiogenesis and tumor invasion by platelet factor-4 and platelet factor-4-derived molecules. Semin Thromb Hemost 2004; 30: 137-144.
  • 55 Dudek AZ, Nesmelova I, Mayo K. et al. Platelet factor 4 promotes adhesion of hematopoietic pr tor cells and binds IL-8: novel mechanisms for modulation of hematopoiesis. Blood 2003; 101: 4687-4694.
  • 56 Eisman R, Surrey S, Ramachandran B. et al. Structural and functional comparison of the genes for human platelet factor 4 and PF4alt. Blood 1990; 76: 336-344.
  • 57 Green CJ, Charles RS, Edwards BF. et al. Identification and characterization of PF4varl, a human gene variant of platelet factor 4. Mol Cell Biol 1989; 09: 1445-1451.
  • 58 Lasagni L, Grepin R, Mazzinghi B. et al. PF- 4/CXCL4 and CXCL4L1 exhibit distinct subcellular localization and a differentially regulated mechanism of secretion. Blood. 2007 epub ahead of print
  • 59 Struyf S, Burdick MD, Proost P. et al. Platelets release CXCL4L1, a nonallelic variant of the chemokine platelet factor-4/CXCL4 and potent inhibitor of angiogenesis. Circ Res 2004; 95: 855-857.
  • 60 Hromas R, Broxmeyer HE, Kim C. et al. Cloning of BRAK, a novel divergent CXC chemokine preferentially expressed in normal versus malignant cells. Biochem Biophys Res Commun 1999; 255: 703-706.
  • 61 Sleeman MA, Fraser JK, Murison JG. et al. B celland monocyte-activating chemokine (BMAC), a novel non-ELR alpha-chemokine. Int Immunol 2000; 12: 677-689.
  • 62 Frederick MJ, Henderson Y, Xu X. et al. In vivo expression of the novel CXC chemokine BRAK in normal and cancerous human tissue. Am J Pathol 2000; 156: 1937-1950.
  • 63 Shellenberger TD, Wang M, Gujrati M. et al. BRAK/CXCL14 is a potent inhibitor of angiogenesis and is a chemotactic factor for immature dendritic cells. Cancer Res 2004; 64: 8262-8270.
  • 64 Schwarze SR, Luo J, Isaacs WB. et al. Modulation of CXCL14 (BRAK) expression in prostate cancer. Prostate 2005; 13: 13
  • 65 Koch AE, Volin MV, Woods JM. et al. Regulation of angiogenesis by the C-X-C chemokines interleukin-8 and epithelial neutrophil activating peptide 78 in the rheumatoid joint. Arthritis Rheum 2001; 44: 31-40.
  • 66 Nickoloff BJ, Mitra RS, Varani J. et al. Aberrant production of interleukin-8 and thrombospondin-1 by psoriatic keratinocytes mediates angiogenesis. Am J Pathol 1994; 144: 820-828.
  • 67 Fowler S, Berberian PA, Shio H. et al. Characterization of cell populations isolated from aortas of rhesus monkeys with experimental atherosclerosis. Circ Res 1980; 46: 520-530.
  • 68 Joris I, Zand T, Nunnari JJ. et al. Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats. Am J Pathol 1983; 113: 341-358.
  • 69 Munro JM, Cotran RS. The pathogenesis of atherosclerosis: atherogenesis and inflammation. Lab Invest 1988; 58: 249-261.
  • 70 Chen CH, Walterscheid JP. Plaque angiogenesis versus compensatory arteriogenesis in atherosclerosis. Circ Res 2006; 99: 787-789.
  • 71 Khurana R, Simons M, Martin JF. et al. Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation 2005; 112: 1813-1824.
  • 72 Winter PM, Morawski AM, Caruthers SD. et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 2003; 108: 2270-2274.
  • 73 Simonini A, Moscucci M, Muller DW. et al. IL-8 is an angiogenic factor in human coronary atherectomy tissue. Circulation 2000; 101: 1519-1526.
  • 74 Damas JK, Eiken HG, Oie E. et al. Myocardial expression of CC- and CXC-chemokines and their receptors in human end-stage heart failure. Cardiovasc Res 2000; 47: 778-787.
  • 75 Lakshminarayanan V, Lewallen M, Frangogiannis NG. et al. Reactive oxygen intermediates induce monocyte chemotactic protein-1 in vascular endothelium after brief ischemia. Am J Pathol 2001; 159: 1301-1311.
  • 76 Dewald O, Zymek P, Winkelmann K. et al. CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ Res 2005; 96: 881-889.
  • 77 Heil M, Ziegelhoeffer T, Wagner S. et al. Collateral artery growth (arteriogenesis) after experimental arterial occlusion is impaired in mice lacking CC-chemokine receptor-2. Circ Res 2004; 94: 671-677.
  • 78 Charan NB, Baile EM, Pare PD. Bronchial vascular congestion and angiogenesis. Eur Respir J 1997; 10: 1173-1180.
  • 79 Charan NB, Carvalho P. Angiogenesis in bronchial circulatory system after unilateral pulmonary artery obstruction. J Appl Physiol 1997; 82: 284-291.
  • 80 Michel RP, Hakim TS. Increased resistance in postobstructive pulmonary vasculopathy: structurefunction relationships. J Appl Physiol 1991; 71: 601-610.
  • 81 Michel RP, Hakim TS, Petsikas D. Segmental vascular resistance in postobstructive pulmonary vasculopathy. J Appl Physiol 1990; 69: 1022-32.
  • 82 Srisuma S, Biswal SS, Mitzner WA. et al. Identification of genes promoting angiogenesis in mouse lung by transcriptional profiling. Am J Respir Cell Mol Biol 2003; 29: 172-179.
  • 83 Mitzner W, Lee W, Georgakopoulos D. et al. Angiogenesis in the mouse lung. Am J Pathol 2000; 157: 93-101.
  • 84 Turner-Warwick M. Precapillary systemic-pulmonary anastomoses. Thorax 1963; 18: 225-237.
  • 85 Peao MND, Aguas AP, DeSa CM. et al. Neoformation of blood vessels in association with rat lung fibrosis induced by bleomycin. Anat Rec 1994; 238: 57-67.
  • 86 Keane MP, Arenberg DA, Lynch JPr. et al. The CXC chemokines, IL-8 and IP-10, regulate angiogenic activity in idiopathic pulmonary fibrosis. J Immunol 1997; 159: 1437-1443.
  • 87 Keane MP, Belperio JA, Arenberg DA. et al. IFNgamma- inducible protein-10 attenuates bleomycin-induced pulmonary fibrosis via inhibition of angiogenesis. J Immunol 1999; 163: 5686-5692.
  • 88 Keane MP, Belperio JA, Moore TA. et al. Neutralization of the CXC chemokine, macrophage inflammatory protein-2, attenuates bleomycin-induced pulmonary fibrosis. J Immunol 1999; 162: 5511-5518.
  • 89 Burdick MD, Murray LA, Keane MP. et al. CXCL11 attenuates bleomycin-induced pulmonary fibrosis via inhibition of vascular remodeling. Am J Respir Crit Care Med 2005; 171: 261-268.
  • 90 Wilkes DS, Egan TM, Reynolds HY. Lung transplantation: opportunities for research and clinical advancement. Am J Respir Crit Care Med 2005; 172: 944-955.
  • 91 Belperio JA, Keane MP, Burdick MD. et al. Role of CXCR2/CXCR2 ligands in vascular remodeling during bronchiolitis obliterans syndrome. J Clin Invest 2005; 115: 1150-1162.
  • 92 Keane MP, Donnelly SC, Belperio JA. et al. Imbalance in the expression of CXC chemokines correlates with bronchoalveolar lavage fluid angiogenic activity and procollagen levels in acute respiratory distress syndrome. J Immunol 2002; 169: 6515-6521.
  • 93 Strieter RM. Masters of angiogenesis. Nat Med 2005; 11: 925-927.
  • 94 Miller LJ, Kurtzman SH, Wang Y. et al. Expression of interleukin-8 receptors on tumor cells and vascular endothelial cells in human breast cancer tissue. Anticancer Res 1998; 18: 77-81.
  • 95 Richards BL, Eisma RJ, Spiro JD. et al. Coexpression of interleukin-8 receptors in head and neck squamous cell carcinoma. Am J Surg 1997; 174: 507-512.
  • 96 Kitadai Y, Haruma K, Sumii K. et al. Expression of interleukin-8 correlates with vascularity in human gastric carcinomas. Am J Pathol 1998; 152: 93-100.
  • 97 Singh RK, Gutman M, Radinsky R. et al. Expression of interleukin 8 correlates with the metastatic potential of human melanoma cells in nude mice. Cancer Res 1994; 54: 3242-3247.
  • 98 Cohen RF, Contrino J, Spiro JD. et al. Interleukin-8 expression by head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 1995; 121: 202-209.
  • 99 Chen Z, Malhotra PS, Thomas GR. et al. Expression of proinflammatory and proangiogenic cytokines in patients with head and neck cancer. Clin Cancer Res 1999; 05: 1369-1379.
  • 100 Mestas J, Burdick MD, Reckamp K. et al. The role of CXCR2/CXCR2 ligand biological axis in renal cell carcinoma. J Immunol 2005; 175: 5351-5357.
  • 101 Luan J, Shattuck-Brandt R, Haghnegahdar H. et al. Mechanism and biological significance of constitutive expression of MGSA/GRO chemokines in malignant melanoma tumor progression. J Leukoc Biol 1997; 62: 588-597.
  • 102 Owen JD, Strieter R, Burdick M. et al. Enhanced tumor-forming capacity for immortalized melanocytes expressing melanoma growth stimulatory activity/ growth-regulated cytokine beta and gamma proteins. Int J Cancer 1997; 73: 94-103.
  • 103 Takamori H, Oades ZG, Hoch OC. et al. Autocrine growth effect of IL-8 and GROalpha on a human pancreatic cancer cell line, Capan-1. Pancreas 2000; 21: 52-56.
  • 104 Wente MN, Keane MP, Burdick MD. et al. Blockade of the chemokine receptor CXCR2 inhibits pancreatic cancer cell-induced angiogenesis. Cancer Lett 2006; 241: 221-227.
  • 105 Wang D, Wang H, Brown J. et al. CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J Exp Med 2006; 203: 941-951.
  • 106 Yoneda J, Kuniyasu H, Crispens MA. et al. Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J Natl Cancer Inst 1998; 90: 447-454.
  • 107 Gawrychowski K, Skopinska-Rozewska E, Barcz E. et al. Angiogenic activity and interleukin-8 content of human ovarian cancer ascites. Eur J Gynaecol Oncol 1998; 19: 262-264.
  • 108 Yatsunami J, Tsuruta N, Ogata K. et al. Interleukin- 8 participates in angiogenesis in non-small cell, but not small cell carcinoma of the lung. Cancer Lett 1997; 120: 101-108.
  • 109 Arenberg DA, Kunkel SL, Burdick MD. et al. Treatment with anti-IL-8 inhibits non-small cell lung cancer tumor growth (Meeting abstract). J Investig Med 1995; 43 (Suppl. 03) (Suppl) 479A
  • 110 Arenberg DA, Keane MP, DiGiovine B. et al. Epithelial-neutrophil activating peptide (ENA-78) is an important angiogenic factor in non-small cell lung cancer. J Clin Invest 1998; 102: 465-472.
  • 111 White ES, Flaherty KR, Carskadon S. et al. Macrophage migration inhibitory factor and CXC chemokine expression in non-small cell lung cancer: role in angiogenesis and prognosis. Clin Cancer Res 2003; 09: 853-860.
  • 112 Chen JJ, Yao PL, Yuan A. et al. Up-regulation of tumor interleukin-8 expression by infiltrating macrophages: its correlation with tumor angiogenesis and patient survival in non-small cell lung cancer. Clin Cancer Res 2003; 09: 729-737.
  • 113 Keane MP, Belperio JA, Xue YY. et al. Depletion of CXCR2 inhibits tumor growth and angiogenesis in a murine model of lung cancer. J Immunol 2004; 172: 2853-2860.
  • 114 Wislez M, Fujimoto N, Izzo JG. et al. High expression of ligands for chemokine receptor CXCR2 in alveolar epithelial neoplasia induced by oncogenic kras. Cancer Res 2006; 66: 4198-4207.
  • 115 Fregene TA, Khanuja PS, Noto AC. et al. Tumorassociated angiogenesis in prostate cancer. Anticancer Res 1993; 13: 2377-2381.
  • 116 Kim SJ, Uehara H, Karashima T. et al. Expression of interleukin-8 correlates with angiogenesis, tumorigenicity, and metastasis of human prostate cancer cells implanted orthotopically in nude mice. Neoplasia 2001; 03: 33-42.
  • 117 Moore BB, Arenberg DA, Stoy K. et al. Distinct CXC chemokines mediate tumorigenicity of prostate cancer cells. Am J Pathol 1999; 154: 1503-1512.
  • 118 Garkavtsev I, Kozin SV, Chernova O. et al. The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis. Nature 2004; 428: 328-332.
  • 119 Charalambous C, Chen TC, Hofman FM. Characteristics of tumor-associated endothelial cells derived from glioblastoma multiforme. Neurosurg Focus 2006; 20: E22
  • 120 Loetscher M, Gerber B, Loetscher P. et al. Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. J Exp Med 1996; 184: 963-996.
  • 121 Moser M. Regulation of Th1/Th2 development by antigen-presenting cells in vivo. Immunobiology 2001; 204: 551-557.
  • 122 Rabin RL, Park MK, Liao F. et al. Chemokine receptor responses on T cells are achieved through regulation of both receptor expression and signaling. J Immunol 1999; 162: 3840-3850.
  • 123 Luster AD. Chemokines--chemotactic cytokines that mediate inflammation. N Engl J Med 1998; 338: 436-445.
  • 124 Qin S, Rottman JB, Myers P. et al. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest 1998; 101: 746-754.
  • 125 Pan J, Burdick MD, Belperio JA. et al. CXCR3/ CXCR3 ligand biological axis impairs RENCA tumor growth by a mechanism of immunoangiostasis. J Immunol 2006; 176: 1456-1464.
  • 126 Strieter RM, Belperio JA, Burdick MD. et al. CXC chemokines: angiogenesis, immunoangiostasis, and metastases in lung cancer. Ann NY Acad Sci 2004; 1028: 351-360.
  • 127 Sharma S, Stolina M, Luo J. et al. Secondary lymphoid tissue chemokine mediates T cell-dependent antitumor responses in vivo. J Immunol 2000; 164: 4558-4563.
  • 128 Sharma S, Yang SC, Hillinger S. et al. SLC/ CCL21-mediated anti-tumor responses require IFNgamma, MIG/CXCL9 and IP-10/CXCL10. Mol Cancer 2003; 02: 22
  • 129 Tannenbaum CS, Tubbs R, Armstrong D. et al. The CXC chemokines IP-10 and Mig are necessary for IL- 12-mediated regression of the mouse RENCA tumor. J Immunol 1998; 161: 927-932.
  • 130 Huang S, Mills L, Mian B. et al. Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. Am J Pathol 2002; 161: 125-134.
  • 131 Mian BM, Dinney CP, Bermejo CE. et al. Fully human anti-interleukin 8 antibody inhibits tumor growth in orthotopic bladder cancer xenografts via down-regulation of matrix metalloproteases and nuclear factor-kappaB. Clin Cancer Res 2003; 09: 3167-3175.
  • 132 Yang XD, Corvalan JR, Wang P. et al. Fully human anti-interleukin-8 monoclonal antibodies: potential therapeutics for the treatment of inflammatory disease states. J Leukoc Biol 1999; 66: 401-410.
  • 133 Yan L, Anderson GM, DeWitte M. et al. Therapeutic potential of cytokine and chemokine antagonists in cancer therapy. Eur J Cancer 2006; 42: 793-802.
  • 134 Chemokine/chemokine receptor nomenclature. Cytokine 2003; 21: 48-49.