Thorac Cardiovasc Surg 2009; 57(1): 1-6
DOI: 10.1055/s-2008-1039060
Review

© Georg Thieme Verlag KG Stuttgart · New York

Neutrophil Apoptosis by Fas/FasL: Harmful or Advantageous in Cardiac Surgery?

P. Kunes1 , 2 , J. Krejsek2 , M. Brtko1 , J. Mandak1 , M. Kolackova2 , M. Trojackova Kudlova2 , C. Andrys2
  • 1Department of Cardiac Surgery, Charles University in Prague, Faculty of Medicine and University Hospital, Hradec Kralove, Czech Republic
  • 2Department of Clinical Immunology and Allergology, Charles University in Prague, School of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
Further Information

Publication History

received June 19, 2008

Publication Date:
23 January 2009 (online)

Abstract

Polymorphonuclear leukocytes or neutrophils are the main executors of cellular death, both in septic inflammation during bacterial infection and in sterile inflammation during trauma or surgery. Whereas in septic inflammation neutrophils perform a useful function to fortify the host's defense against infection, in sterile inflammation, by contrast, they contribute to unwelcome tissue damage. Regardless of the situation, activated neutrophils exhibit a prolonged lifespan and delayed apoptotic death which, under normal conditions, is a prerequisite for their natural renewal. Traditionally, delayed neutrophil apoptosis was considered to promote trauma or surgical injury. According to the results of recent studies, however surprising they may appear, the reverse might be in keeping with what happens in vivo. Apoptotic signaling in neutrophils could, by contrast, contribute to intrinsic protection of the host's tissues. This review article, aimed preferentially but not exclusively at the cardiac surgeon, presents some new information in support of this viewpoint, which fits in with our own observations.

References

  • 1 Tomic V, Russwurm S, Möller E. et al . Transcriptomic and proteomic patterns of systemic inflammation in on-pump and off-pump coronary artery bypass grafting.  Circulation. 2005;  112 2912-2920
  • 2 Ruel M, Bianchi C, Khan T A. et al . Gene expression profile after cardiopulmonary bypass and cardioplegic arrest.  J Thorac Cardiovasc Surg. 2003;  126 1521-1530
  • 3 Danial N N, Korsmeyer S J. Cell death: critical control points.  Cell. 2004;  116 205-219
  • 4 de Cathelineau A M, Henson P M. The final step in programmed cell death: phagocytes carry apoptotic cells to the grave.  Essays Biochem. 2003;  39 105-117
  • 5 Kostin S. Pathways of myocyte death: implications for development of clinical laboratory biomarkers.  Adv Clin Chem. 2005;  40 37-98
  • 6 Krammer P H. CD95 (APO‐1/Fas)-mediated apoptosis: live and let die.  Adv Immunol. 1999;  71 163-210
  • 7 Aouad S M, Cohen L Y, Sharif-Askari E. et al . Caspase-3 is a component of Fas death-inducing signaling complex in lipid rafts and its activity is required for complete caspase-8 activation during Fas-mediated cell death.  J Immunol. 2004;  172 2316-2323
  • 8 Guo R-F, Sun L, Gao H. et al . In vivo regulation of neutrophil apoptosis by C5a during sepsis.  J Leukocyte Biol. 2006;  80 1575-1583
  • 9 Gustafsson A B, Gottlieb R A. Bcl-2 family members of apoptosis, taken to heart.  Am J Physiol. 2006;  292 C45-C51
  • 10 Zou H, Li Y, Liu X, Wang X. An APAF1-cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9.  J Biol Chem. 1999;  274 11549-11556
  • 11 Kokkonen T S, Augustin M T, Mäkinen J M. et al . High endothelial venules of the lymph nodes express Fas ligand.  J Histochem Cytochem. 2004;  52 693-700
  • 12 Arens R, Baars P A, Jak M. et al . CD95 maintains effector T cell homeostasis in chronic immune activation.  J Immunol. 2005;  174 5915-5920
  • 13 Unsinger J, Herndon J M, Davis C G. et al . The role of TCR engagement and activation-induced cell death in sepsis-induced T cell apoptosis.  J Immunol. 2006;  177 7968-7973
  • 14 Pletz M WR, Ioanas M, de Roux A. et al . Reduced spontaneous apoptosis in peripheral blood neutrophils during exacerbation of COPD.  Eur Respir J. 2004;  23 532-537
  • 15 Garlichs C D, Eskafi S, Cicha I. et al . Delay of neutrophil apoptosis in acute coronary syndromes.  J Leukocyte Biol. 2004;  75 828-835
  • 16 Power C P, Wang J H, Manning B. et al . Bacterial lipoprotein delays apoptosis in human neutrophils through inhibition of caspase-3 activity: regulatory roles for CD14 and TLR‐2.  J Immunol. 2004;  173 5229-5237
  • 17 Alvarez M E, Bass J IF, Geffner J R. et al . Neutrophil signaling pathways activated by bacterial DNA stimulation.  J Immunol. 2006;  177 4037-4046
  • 18 Lee K-H, Feig C, Tchikov V. et al . The role of receptor internalization in CD95 signaling.  EMBO J. 2006;  25 1009-1023
  • 19 Ankersmit H J, Weber T, Auer J. et al . Increased serum concentrations of soluble CD95/Fas and caspase 1/ICE in patients with acute angina.  Heart. 2004;  90 151-154
  • 20 Blanco-Colio L M, Martín-Ventura J L, de Teresa E. et al . Increased soluble Fas plasma levels in subjects at high cardiovascular risk. Atorvastatin on Inflammatory Markers (AIM) study, a substudy of ACTFAST.  Arterioscler Thromb Vasc Biol. 2007;  27 168-174
  • 21 van der Meer I M, Oei H-H S, Hofman A. et al . Soluble Fas, a mediator of apoptosis, C-reactive protein, and coronary and extracoronary atherosclerosis. The Rotterdam Coronary Calcification Study.  Atherosclerosis. 2006;  189 464-469
  • 22 Wang T, Dong C, Stevenson S C. et al . Overexpression of soluble Fas attenuates transplant arteriosclerosis in rat aortic allografts.  Circulation. 2002;  106 1536-1542
  • 23 Nishigaki K, Minatoguchi S, Seishima M. et al . Plasma Fas ligand, an inducer of apoptosis, and plasma soluble Fas, an inhibitor of apoptosis, in patients with chronic congestive heart failure.  J Am Coll Cardiol. 1997;  29 1214-1220
  • 24 Peter M E, Budd R C, Desbarats J. et al . The CD95 receptor: apoptosis revisited.  Cell. 2007;  129 447-450
  • 25 Kolodgie F D, Narula J, Burke A P. et al . Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death.  Am J Pathol. 2000;  157 1259-1268
  • 26 Bowen-Pope D F, Schaub F J. Apoptosis of smooth muscle cells is not silent: Fas/FADD initiates a program of inflammatory gene expression.  Trends Cardiovasc Med. 2001;  11 42-45
  • 27 Yang J, Sato K, Aprahamian T. et al . Endothelial overexpression of Fas ligand decreases atherosclerosis in apolipoprotein E-deficient mice.  Arterioscler Thromb Vasc Biol. 2004;  24 1466-1473
  • 28 Walsh K, Sata M. Negative regulation of inflammation by Fas ligand expression on the vascular endothelium.  Trends Cardiovasc Med. 1999;  9 34-41
  • 29 Sata M, Walsh K. TNF-α regulation of Fas ligand expression on the vascular endothelium modulates leukocyte extravasation.  Nat Med. 1998;  4 415-420
  • 30 Sata M, Walsh K. Oxidized LDL activates Fas-mediated endothelial cell apoptosis.  J Clin Invest. 1998;  102 1682-1689
  • 31 Boyle J J, Bowyer D E, Weissberg P L, Bennett M R. Human blood-derived macrophages induce apoptosis in human plaque-derived vascular smooth muscle cells by Fas-ligand/Fas interactions.  Arterioscler Thromb Vasc Biol. 2001;  21 1402-1407
  • 32 Wesche D E, Lomas-Neira J L, Perl M. et al . Leukocyte apoptosis and its significance in sepsis and shock.  J Leukocyte Biol. 2005;  78 325-337
  • 33 Leuenroth S, Lee C, Grutkoski P, Keeping H, Simms H. Interleukin-8-induced suppression of polymorphonuclear leukocyte apoptosis is mediated by suppressing CD95 (Fas/Apo-1) Fas-L interactions.  Surgery. 1998;  124 409-417
  • 34 Ramlawi B, Feng J, Mieno S. et al . Indices of apoptosis activation after blood cardioplegia and cardiopulmonary bypass.  Circulation. 2006;  114 (Suppl. 1) I257-263
  • 35 Jimenez M F, Watson W G, Parodo J. et al . Dysregulated expression of neutrophil apoptosis in the systemic inflammatory response syndrome.  Arch Surg. 1997;  132 1263-1270
  • 36 Greenstein S, Barnard J, Zhou K. et al . Fas activation reduces neutrophil adhesion to endothelial cells.  J Leukocyte Biol. 2000;  68 715-722
  • 37 Negrotto S, Malaver E, Alvarez M E. et al . Aspirin and salycylate suppress polymorphonuclear apoptosis delay mediated by proinflammatory stimuli.  J Pharmacol Exp Therap. 2006;  319 972-979
  • 38 Collard C D, Body S C, Shernan S K. et al . Preoperative statin therapy is associated with reduced cardiac mortality after coronary artery bypass graft surgery.  J Thorac Cardiovasc Surg. 2006;  132 392-400
  • 39 Chello M, Anselmi A, Spadaccio C. et al . Simvastatin increases neutrophil apoptosis and reduces inflammatory reaction after coronary surgery.  Ann Thorac Surg. 2007;  83 1374-1380
  • 40 O'Neil-Callahan K, Katsimaglis G, Tepper M R. et al . Statins decrease perioperative cardiac complications in patients undergoing noncardiac vascular surgery: the Statins for Risk Reduction in Surgery (StaRRS) study.  J Am Coll Cardiol. 2005;  45 336-342
  • 41 Scholz M, Simon A, Berg M. et al . In vivo inhibition of neutrophil activity by a Fas (CD95) stimulating molecule: arterial in-line application in a porcine cardiac surgery model.  J Thorac Cardiovasc Surg. 2004;  127 1735-1742
  • 42 Akao M, O'Rourke B, Teshima Y. et al . Mechanistically distinct steps in the mitochondrial death pathway triggered by oxidative stress in cardiac myocytes.  Circ Res. 2003;  92 186-194
  • 43 Del Re D P, Miyamoto S, Brown J H. RhoA/Rho kinase upregulate Bax to activate a mitochondrial death pathway and induce cardiomyocyte apoptosis.  J Biol Chem. 2007;  282 8069-8078

Prof. Jan Krejsek

Charles University in Prague, School of Medicine in Hradec Kralove
Department of Clinical Immunology and Allergology University Hospital

Sokolska St. 581

500 05 Hradec Kralove

Czech Republic

Fax: + 42 04 95 83 20 15

Email: krejsek@fnhk.cz

    >