J Reconstr Microsurg 2004; 20(8): 637-644
DOI: 10.1055/s-2004-861524
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Structural and Functional Regeneration of Muscle-Related Axons After Transection and Repair of the Rat Sciatic Nerve Using Nonvascularized Autologous Fascia as a Barrier Between Tibial and Peroneal Nerve Fascicles

Barbara S. Lutz1 , 2
  • 1Department of Plastic Surgery, University Hospital Örebro
  • 2Division of Cell Biology, University of Linköping, Sweden
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
03. Januar 2005 (online)

ABSTRACT

Aberrant reinnervation of target organs caused by misdirected axonal growth at the repair site is a major reason for the poor functional outcome usually seen after peripheral nerve transection and repair. This study investigates whether the criss-crossing of regenerating rat sciatic nerve axons between tibial and peroneal nerve fascicles can be reduced by using non-vascularized autologous fascia as a barrier.

The left sciatic nerve was transected and repaired at midthigh as follows: epineurialy sutures (Group A); fascicular repair of tibial and peroneal nerve fascicles (Group B); fascicular repair of tibial and peroneal nerve fascicles separating the two fascicles by non-vascularized autologous fascia (Group C). In the control Group D, only the left tibial fascicle was transected and repaired. Five months postoperatively, the outcome of regeneration was evaluated by histology, by retrograde tracing, and by assessment of the contraction force of the gastrocnemius and tibial anterior muscles. The tracing experiments showed that muscle reinnervation was less abnormal in Group C than in Groups A and B. However, muscle contraction force was not better in Group C than in Groups A and B. With respect to the peroneal nerve innervated muscle, the contraction force in Group C was significantly lower than in Group B. The histologic picture indicated that this inferior result in Group C was due to nerve compression caused by fibrotic scar tissue at the site of the fascia graft.

Results of this study show that a non-vascularized autologous fascial graft used as a barrier between two sutured nerve fascicles in adjacency reduces criss-crossing of regenerating axons between the fascicles, but causes significant nerve compression.

REFERENCES

  • 1 Fu S Y, Gordon T. Contributing factors to poor functional recovery after delayed nerve repair: prolonged axotomy.  J Neurosci. 1995;  15 3876-3885
  • 2 Meyer R S, Abrams R A, Botte M J et al.. Functional recovery following neurorrhaphy of the rat sciatic nerve by epineurial repair compared with tubulization.  J Orthop Res. 1997;  15 664-669
  • 3 Rende M, Granato A, LoMonaco M, Zelano G, Toesca A. Accuracy of reinnervation by peripheral nerve axons regenerating across a 10 mm gap within a permeable chamber.  Exp Neurol. 1991;  111 332-339
  • 4 Bodine-Fowler S C, Meyer S, Moskowitz A, Abrams R, Botte M J. Inaccurate projection of rat soleus motoneurons: a comparison of nerve repair techniques.  Muscle Nerve. 1997;  20 29-37
  • 5 Kline D G, Kim D, Midha R, Harsh C, Tiel R. Management and results of sciatic nerve injuries: a 24-year experience.  J Neurosurg. 1998;  89 13-23
  • 6 Monserrat L, Benito M. Facial synkinesis and aberrant regeneration of the facial nerve.  Adv Neurol. 1988;  47 9-29
  • 7 Sumner A J. Aberrant reinnervation.  Muscle Nerve. 1990;  13 801-803
  • 8 Cajal SR, May RM, trans; DeFelipe J, Jones EG Degeneration and Regeneration of the Nervous System. New York; Oxford University Press Inc 1991
  • 9 Sunderland S. Nerve Injuries and their Repair. A Critical Appraisal Edinburgh; Churchill Livingstone 1991
  • 10 Lundborg G, Dahlin L, Danielsen N, Zhao Q. Trophism, tropism, and specificity in nerve regeneration.  J Reconstr Microsurg. 1994;  5 345-354
  • 11 Cusick C G. Extensive cortical reorganization following sciatic nerve injury in adult rats versus restricted reorganization after neonatal injury: implications for spatial and temporal limits on somatosensory plasticity.  Prog Brain Res. 1996;  108 379-390
  • 12 Hendry I A, Hill C E, Watters D J. Long-term retention of fast blue in sympathetic neurons after axotomy and regeneration-demonstration of incorrect reconnections.  Brain. Res. 1986;  376 292-298
  • 13 Aldskogius H, Molander C, Persson J, Thomander L. Specific and non-specific regeneration of motor axons after sciatic nerve injury and repair in the rat.  J Neurol Sci. 1087;  80 249-257
  • 14 Zhao Q, Dahlin B, Kanje M, Lundborg G. Specificity of muscle reinnervation following repair of the transected sciatic nerve.  J Hand Surg. 1992;  17B 257-261
  • 15 Heumann R, Lindholm D, Bandtlow C et al.. Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerves during development, degeneration and regeneration.  Proc Natl Acad Sci US. 1987;  84 8735-8739
  • 16 Politis M J, Ederle K, Spencer P S. Tropism in nerve regeneration in vivo. Attraction of regenerating axons by diffusable factors derived from cells in distal nerve stumps of transected peripheral nerves.  Brain Res. 1982;  235 1-12
  • 17 Raivich G, Kreuzberg G W. Nerve growth factor and regeneration of peripheral nervous system.  Clin Neurol Neurosurg. 1993;  95 S103-S108
  • 18 Weis J, Schroeder J M. Differential effects of nerve, muscle, and fat tissue on regenerating nerve fibers in vivo.  Muscle Nerve. 1989;  12 723-734
  • 19 Brushart T M. Preferential motor reinnervation: a sequential double-labeling study.  Restor Neurol Neurosci. 1990;  1 281-287
  • 20 Brushart T M, Mathur V, Sood R, Koschorke G M. Dispersion of regenerating axons across enclosed neural gaps.  J Hand Surg. 1995;  20A 557-564
  • 21 Flanagan J G. Life on the road.  Nature. 1999;  401 747-748
  • 22 Mueller B K. Growth cone guidance: first steps towards a deeper understanding.  Ann Rev Neurosci. 1999;  22 351-388
  • 23 Ranscht B. Cadherins: molecular codes for axon guidance and synapse formation.  Int J Dev Neurosci. 2000;  18 643-651
  • 24 Lutz B S, Ma S F, Chuang D CC, Chan K H, Wei F C. Interposition of a pedicle fat flap significantly improves specificity of reinnervation and motor recovery after repair of transected nerves in adjacency in rats.  Plast Reconstr Surg. 2001;  107 116-123
  • 25 Lutz B S, Ma S F, Chuang D CC, Lidman D, Wei F C. Specificity of reinnervation and motor recovery after interposition of an artificial barrier between transected and repaired nerves in adjacency-an experimental study in the rat.  Acta Neurochir. 2001;  143 393-399
  • 26 Disa J J, Klein M H, Goldberg N H. Advantages of autologous fascia versus synthetic patch abdominal reconstruction in experimental animal defects.  Plast Reconstr Surg. 1996;  97 801-806
  • 27 Das S, Davidson S, Walker B et al.. The fate of free autogenous fascial grafts in the rabbit.  Br J Plast Surg. 1990;  43 315-317
  • 28 Peimer C A, Heffner R R, Howard C S, Czyrny J J, Sherwin S S. Peripheral nerve repair using non neural sheaths and conduits.  Hand Surg. 1996;  1 123-130
  • 29 Mohammad J, Shenaq J, Rabinovsky E, Shenaq S. Modulation of peripheral nerve regeneration: a tissue-engineering approach. The role of amnion tube nerve conduit across a 1-centimeter nerve gap.  Plast Reconstr Surg. 2000;  105 660-666
  • 30 Kuljis R O, De Carolis V, Fernandez V, Vincent O. Observations on the early mechanisms of severed nerve regneration after compressive tubulation repair.  Exp Neurol. 1983;  80 708-725
  • 31 Lutz B S, Ma S F, Wei F C, Chuang D CC. Effects of systemically applied IGF-1 on motor nerve recovery after peripheral nerve transection and repair in the rat-a functional study.  Hand Surg. 1999;  4 131-136
  • 32 Gramsbergen A, Ijkema-Paassen J, Meek M F. Sciatic nerve transection in the adult rat: abnormal EMG patterns during locomotion by aberrant innervation of hindleg muscles.  Exp Neurol. 2000;  161 183-193
  • 33 Spector J G, Derby A, Lee P, Roufa D G. Comparison of rabbit facial nerve regeneration in nerve growth factor-containing silicone tubes to that in autologeous neural grafts.  Ann Otol Rhinol Laryngol. 1995;  104 875-885
  • 34 Madorowski S J, Swett J E, Crumley R L. Motor versus sensory neuron regeneration through collagen tubules.  Plast Reconstr Surg. 1998;  102 430-438
  • 35 Peacock E E. Inflammation and the cellular response to injury. In: Peacock EE Wound Repair. 3rd Philadelphia; W.B. Saunders 1984: 1-14
  • 36 Rudolph R, Abraham J, Vecchione T et al.. Myofibroblasts and free silicon around breast implants.  Plast Reconstr Surg. 1987;  62 185-196
  • 37 Chamberlain L J, Jannas I V, Hsu H P et al.. Connective tissue response to tubular implants for peripheral nerve regeneration: the role of myofibroblasts.  J Comp Neurol. 2000;  417 415-430
  • 38 Goldberg I, Knight K R, Mahoney J E et al.. A biochemical and histological comparison of vascularized and free fat grafts in the rabbit.  Ann Plast Surg. 1993;  30 334-340
  • 39 Sakamoto K. Experimental study on pedicle fat grafts after laminectomy: comparison of pedicle fat and free fat grafts [in Japanese].  Nippon Seikeigeka Gakkai Zasshi. 1987;  61 743-753
  • 40 Lolley R D, Bose W J, Bastian F et al.. Vein, silastic, and polyglycolic acid fine mesh: a comparative study in peripheral nerve repair.  Ann Plast Surg. 1995;  35 266-271
  • 41 Heijke G C, Klopper P J, Dutrieux R P. Vein graft conduits versus conventional suturing in peripheral nerve reconstructions.  Microsurgery. 1993;  14 584-588

Barbara S LutzM.D. Ph.D. 

Department of Plastic Surgery, University Hospital Örebro

SE - 70185 Örebro, Sweden

    >