Synlett 2003(13): 2047-2051  
DOI: 10.1055/s-2003-41485
LETTER
© Georg Thieme Verlag Stuttgart · New York

Further Application of an N-Ar Axially Chiral Mimetic-Type Ligand: Asymmetric Grignard Cross-Coupling Reaction

Hideo Horibea, Kumiko Kazutab, Minori Kotokua, Kazuhiro Kondo*b, Hiroaki Okunoa, Yasuoki Murakamia, Toyohiko Aoyama*b
a Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
b Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
e-Mail: aoyama@phar.nagoya-cu.ac.jp; e-Mail: kazuk@phar.nagoya-cu.ac.jp;
Further Information

Publication History

Received 6 August 2003
Publication Date:
08 October 2003 (online)

Abstract

A novel chiral ligand mimicking N-Ar axial chirality, (S)-N-[2-(diphenylphosphanyl)naphthalen-1-yl]-2-(piperidinyl­meth­yl)piperidine, was found to exhibit good enantioselectivity (up to 80% ee) in the asymmetric cross-coupling reaction of 1-phenyl­ethylmagnesium chloride with β-bromostyrene derivatives. Additionall­y, this type ligand is appealing, because it allows the synthesis of a wide variety of analogues.

    References

  • 1 Kondo K. Kazuta K. Fujita H. Sakamoto Y. Murakami Y. Tetrahedron  2002,  58:  5209 
  • 2 von Matt P. Pfaltz A. Angew. Chem., Int. Ed. Engl.  1993,  32:  566 
  • 3 Trost BM. Van Vranken DL. Bingel C. J. Am. Chem. Soc.  1992,  114:  9327 
  • Grignard cross-coupling reaction is called the Kumada-Corriu reaction:
  • 4a Tamao K. Sumitani K. Kumada M. J. Am. Chem. Soc.  1972,  94:  4374 
  • 4b Corriu RJP. Masse JP. J. Chem. Soc., Chem. Commun.  1972,  144 
  • 5a Hayashi T. Fukushima M. Konishi M. Kumada M. Tetrahedron Lett.  1980,  21:  79 
  • 5b Hayashi T. Konishi M. Fukushima M. Mise T. Kagotani M. Tajika M. Kumada M. J. Am. Chem. Soc.  1982,  104:  180 
  • 5c Hayashi T. Hagihara T. Katsuro Y. Kumada M. Bull. Chem. Soc. Jpn.  1983,  56:  363 
  • 5d Hayashi T. Konishi M. Fukushima M. Kanehira K. Hioki T. Kumada M. J. Org. Chem.  1983,  48:  2195 
  • 5e Hayashi T. Yamamoto A. Hojo M. Ito Y. J. Chem. Soc., Chem. Commun.  1989,  495 
  • 6a Vriesema BK. Kellogg RM. Tetrahedron Lett.  1986,  27:  2049 
  • 6b Cross G. Vriesema BK. Boven G. Kellogg RM. van Bolhuis F. J. Organomet. Chem.  1989,  370:  357 
  • 6c Baker KV. Brown JM. Cooley NA. Hughes GD. Taylar RJ. J. Organomet. Chem.  1989,  370:  397 
  • 6d Jedlicka B. Kratky C. Weissensteiner W. Widhalm M. J. Chem. Soc., Chem. Commun.  1993,  1329 
  • 6e Pellet-Rostaing S. Saluzzo C. Halle RT. Breuzard J. Vial L. Guyader FL. Lemaire M. Tetrahedron: Asymmetry  2001,  12:  1983 
  • 7a Kreuzfeld H.-J. Döbler C. Abicht H.-P. J. Organomet. Chem.  1987,  336:  287 
  • 7b Döbler C. Kreuzfeld H.-J. J. Organomet. Chem.  1988,  344:  249 
  • 7c Uemura M. Miyake R. Nishimura H. Matsumoto Y. Hayashi T. Tetrahedron: Asymmetry  1992,  3:  213 
  • 7d Yamago S. Yanagawa M. Nakamura E. J. Chem. Soc., Chem. Commun.  1994,  52:  2093 
  • 7e Richards CJ. Hibbs DE. Hursthouse MB. Tetrahedron Lett.  1995,  36:  3745 
  • 7f Yamago S. Yanagawa M. Mukai H. Nakamura E. Tetrahedron  1996,  52:  5091 
  • 7g Lloyd-Jones GC. Butts CP. Tetrahedron  1998,  54:  901 
  • 8 Schwink L. Knochel P. Chem.-Eur. J.  1998,  4:  950 
  • 9 Hayashi M. Takaoki K. Hashimoto Y. Saigo K. Enantiomer  1997,  2:  293 
  • 10 For a planar chiral mimetic, see: Jones G. Butler DCD. Richards CJ. Tetrahedron Lett.  2000,  41:  9351 
  • 11 Ogawa A. Curran DP. J. Org. Chem.  1997,  62:  450 
  • Use of the ligand 1o (Figure 4) possessing a pendant methoxy group resulted in no reaction. For the ligand 1o, see:
  • 13a Miyano S, Hattori T, Komuro Y, and Kumobayashi H. inventors; Jpn. Kokai Tokkyo koho,  H09241277.  ; Chem. Abstr. 1997, 127, 302486h
  • 13b Kondo K. Fujita H. Iida T. Suzuki T. Murakami Y. 30thCongress of Heterocyclic Chemistry, November 24-26th   Hachioji; Japan: 1999. 
  • 13c Mino T. Tanaka Y. Sakamoto M. Fujita T. Heterocycles  2000,  53:  1485 
  • The physical data of 3a, 3b, 3d and 3e were comparable to those reported:
  • 15a Graven A. Jorgensen KA. Dahl S. Stanczak A. J. Org. Chem.  1994,  59:  3543 
  • 15b Ranu BC. Samanta S. Guchhait SK. J. Org. Chem.  2001,  66:  4102 
  • 15c

    The new styrene derivative 3c was characterized by IR, 1H- and 13C NMR, MS, and HRMS. The 1H NMR data of 3c are shown below: 1H NMR (CDCl3): δ = 1.24 (d, J = 6.9 Hz, 3 H × 2), 2.88 (sept, J = 6.9 Hz, 1 H), 6.70 (d, J = 13.8 Hz, 1 H), 7.07 (d, J = 13.8 Hz, 1 H), 7.13-7.29 (m, 4 H).

  • For other catalytic asymmetric Grignard cross-couplings, see:
  • 19a Tamao K. Minato A. Miyake N. Matsuda T. Kiso Y. Kumada M. Chem. Lett.  1975,  133 
  • 19b Tamao K. Yamamoto H. Matsumoto H. Miyake N. Hayashi T. Kumada M. Tetrahedron Lett.  1977,  1389 
  • 19c Hayashi T. Konishi M. Okamoto Y. Kabeta K. Kumada M. J. Org. Chem.  1986,  51:  3772 
  • 19d Iida A. Yamashita M. Bull. Chem. Soc. Jpn.  1988,  61:  2365 
  • 19e Hayashi T. Hayashizaki K. Kiyoi T. Ito Y. J. Am. Chem. Soc.  1988,  110:  8153 
  • 19f Hayashi T. Hayashizaki K. Ito Y. Tetrahedron Lett.  1989,  30:  215 
  • 19g Hayashi T. Niizuma S. Kamikawa T. Suzuki N. Uozumi Y. J. Am. Chem. Soc.  1995,  117:  9101 
  • 19h Kamikawa T. Hayashi T. Tetrahedron  1999,  55:  3455 
  • 19i Hölzer B. Hoffmann RW. Chem. Commun.  2003,  732 
  • Another type of catalytic asymmetric cross-coupling, the Suzuki and Miyaura reaction, has been reported, see:
  • 20a Cho SY. Shibasaki M. Tetrahedron: Asymmetry  1998,  9:  3751 
  • 20b Cammidge AN. Crépy KVL. Chem. Commun.  2000,  1723 
  • 20c Yin J. Buchwald SL. J. Am. Chem. Soc.  2000,  122:  12051 
  • 20d Castanet A.-S. Colobert F. Broutin P.-E. Obringer M. Tetrahedron: Asymmetry  2002,  13:  659 
  • For recent chiral P,N(sp3)-ligands, see:
  • 21a Mino T. Tanaka Y. Akita K. Sakamoto M. Fujita T. Heterocycles  2003,  60:  9 
  • 21b Shibatomi K. Uozumi Y. Tetrahedron: Asymmetry  2002,  13:  1769 
  • 21c Jin M.-J. Kim S.-H. Lee S.-J. Kim Y.-M. Tetrahedron Lett.  2002,  43:  7409 
  • 21d Uozumi Y. Shibatomi K. J. Am. Chem. Soc.  2001,  123:  2919 
  • 21e Mino T. Hata S. Ohtaka K. Sakamoto M. Fujita T. Tetrahedron Lett.  2001,  42:  4837 
  • 21f Okuyama Y. Nakano H. Hongo H. Tetrahedron: Asymmetry  2000,  11:  1193 
  • 21g Suzuki Y. Abe I. Hiroi K. Heterocycles  1999,  50:  89 
  • 21h Cahill JP. Cunneen D. Guiry PJ. Tetrahedron: Asymmetry  1999,  10:  4157 
  • 21i Bourghida M. Widhalm M. Tetrahedron: Asymmetry  1998,  9:  1073 
  • 21j Hattori T. Komuro Y. Hayashizaka N. Takahashi H. Miyano S. Enantiomer  1997,  2:  203 ; and references cited therein
  • 22 During the completion of this manuscript, we became aware of a recent report by Mino, T. et al. of the Pd-catalyzed asymmetric allylic alkylation with the ligand 1m: Mino T. Tanaka Y. Sato Y. Saito A. Sakamoto M. Fujita T. Tetrahedron Lett.  2003,  44:  4677 
12

The use of other solvents such as THF, CH2Cl2 and toluene, and the use of nickel salts in place of PdCl2(MeCN)2, gave less satisfactory results.

14

The use of ligand 1i at ca.-20 °C afforded the coupling product with 25% yield and 80% ee.

16

The use of vinyl bromide and 1-propenyl bromide as substrates resulted in no reaction.

17

The racemic and optically active carboxylic acid 7 were purchased from Aldrich Co., Ltd.

18

The ligands 1b, 1d, 1e, and 1g-i were reported by us. [1] The new ligands 1a, 1c, 1f, 1j-l and 1n were characterized by IR, 1H- and 13C NMR, FABMS, and elemental analysis. All ligands 1a-n were synthesized according to the typical procedure described below. ( S )- N -[2-(Diphenylphosphanyl)naphthalen-1-yl]-2-(piperidinylmethyl)piperidine ( 1j). To a stirred solution of (S)-2-(piperidinylmethyl)piperidine (700 mg, 3.84 mmol) in THF (4.0 mL) was gradually added BuLi (2.53 mL, 4.00 mmol, 1.58 M solution in hexane) at -30 °C, and the mixture was stirred for 2 h at the same temperature. To this solution was then added a solution of 1-methoxy-2-(diphenylphos-phinoyl)naphthalene (680 mg, 1.90 mmol) in THF (2.0 mL) at -30 °C. The whole mixture was stirred for 1 h at the same temperature, quenched with H2O and extracted with EtOAc. The organic extracts were successively washed with saturated aq NH4Cl and brine, dried (Na2SO4) and concentrated. Purification by silica gel column (Fuji Silysia Chromatorex NH, EtOAc/hexane=1:5) gave a mixture (724 mg) of 1-(S)-N-[2-(diphenylphosphonyl)naphthalen-1-yl]-2-(piperidinylmethyl)piperidine and small amounts of impurities. This mixture was used for the next step without further separation. IR (neat): ν = 1308, 1254, 1192, 1161 cm-1. 1H NMR (CDCl3): δ = 0.75-1.15 (m, 8 H), 1.24-1.45 (m, 2 H), 1.60-1.94 (m, 8 H), 2.46 (dd, J = 13.3, 5.9 Hz, 1 H), 2.92 (br d, J = 11.1 Hz, 1 H), 3.36 (dd, J = 11.1, 11.1 Hz, 1 H), 3.51-3.62 (br, 1 H), 6.97 (dd, J = 12.1, 8.6 Hz, 1 H), 7.35-7.57 (m, 10 H), 7.65-7.87 (m, 4 H), 8.23 (d, J = 8.4 Hz, 1 H). 13C NMR (CDCl3): 24.29, 24.90, 25.47, 25.63, 31.38, 54.80, 56.09, 60.55, 62.23, 125.15, 125.42, 125.62, 126.21, 127.02, 127.95, 128.13, 128.65, 129.02, 129.22, 129.77, 130.74, 131.09, 131.23, 131.37, 131.94, 132.07, 134.15, 134.65, 135.09, 135.22, 135.66, 136.22, 136.63, 155.14. FABMS: m/z = 509 (M+ + 1). The above mixture was dissolved in p-xylene (7.0 mL), and Et3N (2.10 mL, 15.1 mmol) and HSiCl3 (1.4 mL, 14 mmol) were added at 0 °C. The whole mixture was heated at 140 °C for 2 h. After being cooled to r.t., the reaction mixture was carefully poured into 10% NaOH, and the whole mixture was extracted with EtOAc. The organic extracts were successively washed with water and brine, dried (Na2SO4), and concentrated. Purification by silica gel column (Fuji Silysia Chromatorex NH, hexane/EtOAc = 20:1) gave (S)-N-[2-(diphenylphos-phanyl)naphthyl]-2-(piperidinylmethyl)piperidine (1j)
(505 mg, 54% in 2 steps) as a colorless amorphous.
[α]D 28 +115 (c 1.60, dioxane). IR(nujol): ν = 1300, 1275, 1206, 1159 cm-1. 1H NMR (CDCl3): δ = 0.83-2.22 (m, 18 H), 2.66 (br d, J = 11.5 Hz, 1 H × 4/5), 3.01 (br d, J = 11.2 Hz, 1 H × 1/5), 3.30 (br dd, J = 11.5, 10.6 Hz, 1 H × 4/5), 3.45-3.53 (br, 1 H × 1/5), 3.55-3.73 (br, 1 H × 4/5), 4.13-4.28 (br, 1 H × 1/5), 6.89 (dd, J = 8.6, 2.4 Hz, 1 H × 4/5), 7.09 (dd, J = 8.6, 3.8 Hz, 1 H × 1/5), 7.14-7.57 (m, 13 H), 7.72-7.77 (m, 1 H × 1/5), 7.81 (dd, J = 6.3, 3.5 Hz, 1 H × 4/5), 8.05 (dd, J = 6.3, 3.5 Hz, 1 H × 4/5), 8.63 (dd, J = 6.3, 3.5 Hz,
1 H × 1/5). 13C NMR (CDCl3): 24.05, 24.29, 24.41, 25.27, 25.71, 25.93, 26.02, 27.47, 29.75, 31.59, 32.34, 54.10, 54.32, 54.93, 55.10, 57.17, 57.38, 59.20, 61.70, 62.50, 62.59, 124.80, 124.94, 125.49, 125.57, 125.78, 125.95, 126.02, 126.71, 127.44, 127.90, 127.97, 128.00, 128.13, 128.17, 128.27, 128.37, 128.63, 129.50, 131.91, 132.72, 133.00, 133.29, 133.54, 133.80, 133.95, 134.10, 134.26, 134.54, 134.66, 135.01, 135.19, 136.92, 137.40, 137.60, 138.35, 138.54, 138.81, 139.00, 139.63, 139.87, 150.99, 151.30, 153.92, 154.28. FABMS: m/z = 493 (M+ + 1). Anal. Calcd for C33H37N2P: C, 80.46; H, 7.57; N, 5.69, Found: C, 80.27; H, 7.56; N, 5.85.
Typical Procedure for Grignard Cross-Coupling Reaction of ( E )-β-Bromostyrene(3a) with Ligand 1j (entry 3, Table 2). 1-Phenylethylmagnesium chloride (4) (2.10 mL, 1.50 mmol, 0.70 mol/L in Et2O) was added to the mixture of PdCl2(MeCN)2 (9.3 mg, 0.036 mmol) and the ligand 1j (18.2 mg, 0.0369 mmol) in α,α,α-trifluorotoluene (2.10 mL) at 0 °C, and the solution was stirred at the same temperature for 30 min (CAUTION: stirring at 0 °C for 30 min for the favorable complexation of Pd and ligand 1j is needed.). To the solution was added (E)-β-bromostyrene (3a) (133 mg, 0.727 mmol) at -10 °C. The resulting solution was stirred for 6 h at -10 °C. After usual work-up, purification by silica gel column(hexane) afforded the coupling product 5a (105 mg, 69%, 72% ee) as a colorless oil. The ee was determined by HPLC analysis (Daicel chiralcel OD, hexane/i-PrOH = 100:1, 0.3 mL/min, 254 nm): tR/min = 34.9 (S), 37.1 (R).