Semin Respir Crit Care Med 2024; 45(02): 274-286
DOI: 10.1055/s-0043-1777797
Review Article

New Guidelines for Severe Community-acquired Pneumonia

Davide Calabretta
1   Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
2   Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
,
Ignacio Martìn-Loeches
3   Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organisation (MICRO), St James's Hospital, Dublin, Ireland
4   Trinity College Dublin, Dublin, Ireland
5   CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
6   Department of Pulmonology, Hospital Clínic of Barcelona, Barcelona, Spain
,
Antoni Torres
2   Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
7   Department of Medicine, University of Barcelona, Barcelona, Spain
8   Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
› Author Affiliations

Abstract

In 2023, the new European guidelines on severe community-acquired pneumonia, providing clinical practice recommendations for the management of this life-threatening infection, characterized by a high burden of mortality, morbidity, and costs for the society. This review article aims to summarize the principal evidence related to eight different questions covered in the guidelines, by also highlighting the future perspectives for research activity.



Publication History

Article published online:
01 March 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Torres A, Cilloniz C, Niederman MS. et al. Pneumonia. Nat Rev Dis Primers 2021; 7 (01) 25
  • 2 Martin-Loeches I, Garduno A, Povoa P, Nseir S. Choosing antibiotic therapy for severe community-acquired pneumonia. Curr Opin Infect Dis 2022; 35 (02) 133-139
  • 3 Simonetti AF, Garcia-Vidal C, Viasus D. et al. Declining mortality among hospitalized patients with community-acquired pneumonia. Clin Microbiol Infect 2016; 22 (06) 567.e1-567.e7
  • 4 Kolditz M, Ewig S, Klapdor B. et al; CAPNETZ Study Group. Community-acquired pneumonia as medical emergency: predictors of early deterioration. Thorax 2015; 70 (06) 551-558
  • 5 Cavallazzi R, Furmanek S, Arnold FW. et al. The burden of community-acquired pneumonia requiring admission to ICU in the United States. Chest 2020; 158 (03) 1008-1016
  • 6 Ferrer M, Travierso C, Cilloniz C. et al. Severe community-acquired pneumonia: Characteristics and prognostic factors in ventilated and non-ventilated patients. PLoS ONE 2018; 13 (01) e0191721
  • 7 Morgan AJ, Glossop AJ. Severe community-acquired pneumonia. BJA Educ 2016; 16 (05) 167-172
  • 8 Shoar S, Musher DM. Etiology of community-acquired pneumonia in adults: a systematic review. Pneumonia 2020; 12: 11
  • 9 Rouzé A, Martin-Loeches I, Povoa P. et al; coVAPid Study Group. Relationship between SARS-CoV-2 infection and the incidence of ventilator-associated lower respiratory tract infections: a European multicenter cohort study. Intensive Care Med 2021; 47 (02) 188-198
  • 10 Martin-Loeches I, Torres A, Nagavci B. et al; ERS/ESICM/ESCMID/ALAT guidelines for the management of severe community-acquired pneumonia. Intensive Care Med 2023; 1-18
  • 11 Renaud C, Kollef MH. Classical and molecular techniques to diagnose HAP/VAP. Semin Respir Crit Care Med 2022; 43 (02) 219-228
  • 12 Webb BJ, Jones B, Dean NC. Empiric antibiotic selection and risk prediction of drug-resistant pathogens in community-onset pneumonia. Curr Opin Infect Dis 2016; 29 (02) 167-177
  • 13 Enne VI, Aydin A, Baldan R. et al; INHALE WP1 Study Group. Multicentre evaluation of two multiplex PCR platforms for the rapid microbiological investigation of nosocomial pneumonia in UK ICUs: the INHALE WP1 study. Thorax 2022; 77 (12) 1220-1228
  • 14 Niederman MS, Torres A. Severe community-acquired pneumonia. Eur Respir Rev 2022; 31 (166) 220123
  • 15 Webb BJ, Sorensen J, Mecham I. et al. Antibiotic use and outcomes after implementation of the drug resistance in pneumonia score in ED patients with community-onset pneumonia. Chest 2019; 156 (05) 843-851
  • 16 Jones BE, Ying J, Stevens V. et al. Empirical anti-MRSA vs standard antibiotic therapy and risk of 30-day mortality in patients hospitalized for pneumonia. JAMA Intern Med 2020; 180 (04) 552-560
  • 17 Murphy CN, Fowler R, Balada-Llasat JM. et al. Multicenter evaluation of the BioFire FilmArray Pneumonia/Pneumonia Plus Panel for detection and quantification of agents of lower respiratory tract infection. J Clin Microbiol 2020; 58 (07) e00128-e20
  • 18 Klein M, Bacher J, Barth S. et al. Multicenter evaluation of the Unyvero Platform for testing bronchoalveolar lavage fluid. J Clin Microbiol 2021; 59 (03) e02497-e20
  • 19 Pickens C, Wunderink RG, Qi C. et al. A multiplex polymerase chain reaction assay for antibiotic stewardship in suspected pneumonia. Diagn Microbiol Infect Dis 2020; 98 (04) 115179
  • 20 Brendish NJ, Malachira AK, Armstrong L. et al. Routine molecular point-of-care testing for respiratory viruses in adults presenting to hospital with acute respiratory illness (ResPOC): a pragmatic, open-label, randomised controlled trial. Lancet Respir Med 2017; 5 (05) 401-411
  • 21 Buchan BW, Windham S, Balada-Llasat JM. et al. Practical comparison of the BioFire FilmArray Pneumonia Panel to routine diagnostic methods and potential impact on antimicrobial stewardship in adult hospitalized patients with lower respiratory tract infections. J Clin Microbiol 2020; 58 (07) e00135-e20
  • 22 Charalampous T, Kay GL, Richardson H. et al. Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection. Nat Biotechnol 2019; 37 (07) 783-792
  • 23 Torres A, Lee N, Cilloniz C, Vila J, Van der Eerden M. Laboratory diagnosis of pneumonia in the molecular age. Eur Respir J 2016; 48 (06) 1764-1778
  • 24 Liapikou A, Cillóniz C, Torres A. Emerging strategies for the noninvasive diagnosis of nosocomial pneumonia. Expert Rev Anti Infect Ther 2019; 17 (07) 523-533
  • 25 Risch M, Radjenovic D, Han JN, Wydler M, Nydegger U, Risch L. Comparison of MALDI TOF with conventional identification of clinically relevant bacteria. Swiss Med Wkly 2010; 140: w13095
  • 26 Idelevich EA, Sparbier K, Kostrzewa M, Becker K. Rapid detection of antibiotic resistance by MALDI-TOF mass spectrometry using a novel direct-on-target microdroplet growth assay. Clin Microbiol Infect 2018; 24 (07) 738-743
  • 27 Rybicka M, Miłosz E, Bielawski KP. Superiority of MALDI-TOF mass spectrometry over real-time PCR for SARS-CoV-2 RNA detection. Viruses 2021; 13 (05) 730
  • 28 Mayer LM, Kahlert C, Rassouli F, Vernazza P, Albrich WC. Impact of viral multiplex real-time PCR on management of respiratory tract infection: a retrospective cohort study. Pneumonia 2017; 9 (01) 4
  • 29 Guyatt GH, Alonso-Coello P, Schünemann HJ. et al. Guideline panels should seldom make good practice statements: guidance from the GRADE Working Group. J Clin Epidemiol 2016; 80: 3-7
  • 30 Jones BE, Jones MM, Huttner B. et al. Trends in antibiotic use and nosocomial pathogens in hospitalized veterans with pneumonia at 128 medical centers, 2006-2010. Clin Infect Dis 2015; 61 (09) 1403-1410
  • 31 Jones BE, Brown KA, Jones MM. et al. Variation in empiric coverage versus detection of methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa in hospitalizations for community-onset pneumonia across 128 US Veterans Affairs Medical Centers. Infect Control Hosp Epidemiol 2017; 38 (08) 937-944
  • 32 Aliberti S, Reyes LF, Faverio P. et al; GLIMP investigators. Global initiative for meticillin-resistant Staphylococcus aureus pneumonia (GLIMP): an international, observational cohort study. Lancet Infect Dis 2016; 16 (12) 1364-1376
  • 33 Restrepo MI, Babu BL, Reyes LF. et al; GLIMP. Burden and risk factors for Pseudomonas aeruginosa community-acquired pneumonia: a multinational point prevalence study of hospitalised patients. Eur Respir J 2018; 52 (02) 1701190
  • 34 Villafuerte D, Aliberti S, Soni NJ. et al; GLIMP Investigators. Prevalence and risk factors for Enterobacteriaceae in patients hospitalized with community-acquired pneumonia. Respirology 2020; 25 (05) 543-551
  • 35 Jain S, Self WH, Wunderink RG. et al; CDC EPIC Study Team. Community-acquired pneumonia requiring hospitalization among U.S. Adults. N Engl J Med 2015; 373 (05) 415-427
  • 36 Gil R, Webb BJ. Strategies for prediction of drug-resistant pathogens and empiric antibiotic selection in community-acquired pneumonia. Curr Opin Pulm Med 2020; 26 (03) 249-259
  • 37 Prina E, Ranzani OT, Polverino E. et al. Risk factors associated with potentially antibiotic-resistant pathogens in community-acquired pneumonia. Ann Am Thorac Soc 2015; 12 (02) 153-160
  • 38 Shindo Y, Ito R, Kobayashi D. et al. Risk factors for drug-resistant pathogens in community-acquired and healthcare-associated pneumonia. Am J Respir Crit Care Med 2013; 188 (08) 985-995
  • 39 Shorr AF, Myers DE, Huang DB, Nathanson BH, Emons MF, Kollef MH. A risk score for identifying methicillin-resistant Staphylococcus aureus in patients presenting to the hospital with pneumonia. BMC Infect Dis 2013; 13 (01) 268
  • 40 Aliberti S, Di Pasquale M, Zanaboni AM. et al. Stratifying risk factors for multidrug-resistant pathogens in hospitalized patients coming from the community with pneumonia. Clin Infect Dis 2012; 54 (04) 470-478
  • 41 Niederman MS, Brito V. Pneumonia in the older patient. Clin Chest Med 2007; 28 (04) 751-771
  • 42 Schreiber MP, Chan CM, Shorr AF. Resistant pathogens in nonnosocomial pneumonia and respiratory failure: is it time to refine the definition of health-care-associated pneumonia?. Chest 2010; 137 (06) 1283-1288
  • 43 Webb BJ, Dascomb K, Stenehjem E. et al. Derivation and multicenter validation of the drug resistance in Pneumonia Clinical Prediction Score. Antimicrob Agents Chemother 2016; 60 (05) 2652-2663
  • 44 Maruyama T, Fujisawa T, Ishida T. et al. A therapeutic strategy for all pneumonia patients: a 3-year prospective multicenter cohort study using risk factors for multidrug-resistant pathogens to select initial empiric therapy. Clin Infect Dis 2019; 68 (07) 1080-1088
  • 45 Sando E, Suzuki M, Ishida M. et al. Definitive and indeterminate Pseudomonas aeruginosa infection in adults with community-acquired pneumonia: a prospective observational study. Ann Am Thorac Soc 2021; 18 (09) 1475-1481
  • 46 Torres A, Niederman MS. Too much or too little empiric treatment for Pseudomonas aeruginosa in community-acquired pneumonia?. Ann Am Thorac Soc 2021; 18 (09) 1456-1458
  • 47 Pascual-Guardia S, Amati F., Marin-Corral J. et al Bacterial Patterns and Empiric Antibiotic Use in COPD Patients With Community-Acquired Pneumonia. Archivos de Bronconeumologia 2023; 59 (02) 90-100
  • 48 Tillotson G, Lodise T, Classi P, Mildvan D, McKinnell JA. Antibiotic treatment failure and associated outcomes among adult patients with community-acquired pneumonia in the outpatient setting: a real-world US Insurance Claims Database Study. Open Forum Infect Dis 2020; 7 (03) ofaa065
  • 49 Christ-Crain M, Schuetz P, Müller B. Biomarkers in the management of pneumonia. Expert Rev Respir Med 2008; 2 (05) 565-572
  • 50 Christ-Crain M, Opal SM. Clinical review: the role of biomarkers in the diagnosis and management of community-acquired pneumonia. Crit Care 2010; 14 (01) 203
  • 51 Bouadma L, Luyt CE, Tubach F. et al; PRORATA Trial Group. Use of procalcitonin to reduce patients' exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet 2010; 375 (9713): 463-474
  • 52 Schuetz P, Wirz Y, Sager R. et al. Effect of procalcitonin-guided antibiotic treatment on mortality in acute respiratory infections: a patient level meta-analysis. Lancet Infect Dis 2018; 18 (01) 95-107
  • 53 Galli F, Bindo F, Motos A. et al Procalcitonin and C-reactive protein to rule out early bacterial coinfection in COVID-19 critically ill patients. Intensive Care Medicine 2023; 49 (08) 934-945
  • 54 Engelmann I, Dubos F, Lobert PE. et al. Diagnosis of viral infections using myxovirus resistance protein A (MxA). Pediatrics 2015; 135 (04) e985-e993
  • 55 Thomas J, Pociute A, Kevalas R, Malinauskas M, Jankauskaite L. Blood biomarkers differentiating viral versus bacterial pneumonia aetiology: a literature review. Ital J Pediatr 2020; 46 (01) 4
  • 56 Mauri T, Turrini C, Eronia N. et al. Physiologic effects of high-flow nasal cannula in acute hypoxemic respiratory failure. Am J Respir Crit Care Med 2017; 195 (09) 1207-1215
  • 57 Lemiale V, Mokart D, Resche-Rigon M. et al; Groupe de Recherche en Réanimation Respiratoire du patient d'Onco-Hématologie (GRRR-OH). Effect of noninvasive ventilation vs oxygen therapy on mortality among immunocompromised patients with acute respiratory failure: a randomized clinical trial. JAMA 2015; 314 (16) 1711-1719
  • 58 Frat JP, Thille AW, Mercat A. et al; FLORALI Study Group, REVA Network. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med 2015; 372 (23) 2185-2196
  • 59 Brambilla AM, Aliberti S, Prina E. et al. Helmet CPAP vs. oxygen therapy in severe hypoxemic respiratory failure due to pneumonia. Intensive Care Med 2014; 40 (07) 942-949
  • 60 Cosentini R, Brambilla AM, Aliberti S. et al. Helmet continuous positive airway pressure vs oxygen therapy to improve oxygenation in community-acquired pneumonia: a randomized, controlled trial. Chest 2010; 138 (01) 114-120
  • 61 Hilbert G, Gruson D, Vargas F. et al. Noninvasive ventilation in immunosuppressed patients with pulmonary infiltrates, fever, and acute respiratory failure. N Engl J Med 2001; 344 (07) 481-487
  • 62 Confalonieri M, Potena A, Carbone G, Porta RD, Tolley EA, Umberto Meduri G. Acute respiratory failure in patients with severe community-acquired pneumonia. Am J Respir Crit Care Med 1999; 160 (05) 1585-1591
  • 63 Patel BK, Wolfe KS, Pohlman AS, Hall JB, Kress JP. Effect of noninvasive ventilation delivered by helmet vs face mask on the rate of endotracheal intubation in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 2016; 315 (22) 2435-2441
  • 64 Grieco DL, Menga LS, Raggi V. et al. Physiological comparison of high-flow nasal cannula and helmet noninvasive ventilation in acute hypoxemic respiratory failure. Am J Respir Crit Care Med 2020; 201 (03) 303-312
  • 65 Sim MAB, Dean P, Kinsella J, Black R, Carter R, Hughes M. Performance of oxygen delivery devices when the breathing pattern of respiratory failure is simulated. Anaesthesia 2008; 63 (09) 938-940
  • 66 Sztrymf B, Messika J, Bertrand F. et al. Beneficial effects of humidified high flow nasal oxygen in critical care patients: a prospective pilot study. Intensive Care Med 2011; 37 (11) 1780-1786
  • 67 Riera J, Barbeta E, Tormos A. et al; CIBERESUCICOVID Consortium. Effects of intubation timing in patients with COVID-19 throughout the four waves of the pandemic: a matched analysis. Eur Respir J 2023; 61 (03) 2201426
  • 68 Grasselli G, Calfee CS, Camporota L. et al; European Society of Intensive Care Medicine Taskforce on ARDS. ESICM guidelines on acute respiratory distress syndrome: definition, phenotyping and respiratory support strategies. Intensive Care Med 2023; 49 (07) 727-759
  • 69 Baddour LM, Yu VL, Klugman KP. et al; International Pneumococcal Study Group. Combination antibiotic therapy lowers mortality among severely ill patients with pneumococcal bacteremia. Am J Respir Crit Care Med 2004; 170 (04) 440-444
  • 70 Weiss K, Tillotson GS. The controversy of combination vs monotherapy in the treatment of hospitalized community-acquired pneumonia. Chest 2005; 128 (02) 940-946
  • 71 Hansen MP, Scott AM, McCullough A. et al. Adverse events in people taking macrolide antibiotics versus placebo for any indication. Cochrane Database Syst Rev 2019; 1 (01) CD011825
  • 72 Fish DN. Fluoroquinolone adverse effects and drug interactions. Pharmacotherapy 2001; 21 (10 Pt 2): 253S-272S
  • 73 Altenburg J, de Graaff CS, van der Werf TS, Boersma WG. Immunomodulatory effects of macrolide antibiotics - part 1: biological mechanisms. Respiration 2011; 81 (01) 67-74
  • 74 Martin-Loeches I, Lisboa T, Rodriguez A. et al. Combination antibiotic therapy with macrolides improves survival in intubated patients with community-acquired pneumonia. Intensive Care Med 2010; 36 (04) 612-620
  • 75 Arnold FW, Summersgill JT, Lajoie AS. et al; Community-Acquired Pneumonia Organization (CAPO) Investigators. A worldwide perspective of atypical pathogens in community-acquired pneumonia. Am J Respir Crit Care Med 2007; 175 (10) 1086-1093
  • 76 Mortensen EM, Restrepo MI, Anzueto A, Pugh J. The impact of empiric antimicrobial therapy with a β-lactam and fluoroquinolone on mortality for patients hospitalized with severe pneumonia. Crit Care 2005; 10 (01) R8
  • 77 Wilson BZ, Anzueto A, Restrepo MI, Pugh MJV, Mortensen EM. Comparison of two guideline-concordant antimicrobial combinations in elderly patients hospitalized with severe community-acquired pneumonia. Crit Care Med 2012; 40 (08) 2310-2314
  • 78 Sligl WI, Asadi L, Eurich DT, Tjosvold L, Marrie TJ, Majumdar SR. Macrolides and mortality in critically ill patients with community-acquired pneumonia: a systematic review and meta-analysis. Crit Care Med 2014; 42 (02) 420-432
  • 79 Adrie C, Schwebel C, Garrouste-Orgeas M. et al; Article Was Written on behalf of the Outcomerea Study Group. Initial use of one or two antibiotics for critically ill patients with community-acquired pneumonia: impact on survival and bacterial resistance. Crit Care 2013; 17 (06) R265
  • 80 Ceccato A, Cilloniz C, Ranzani OT. et al. Treatment with macrolides and glucocorticosteroids in severe community-acquired pneumonia: a post-hoc exploratory analysis of a randomized controlled trial. PLoS ONE 2017; 12 (06) e0178022
  • 81 Abbas M, Paul M, Huttner A. New and improved? A review of novel antibiotics for Gram-positive bacteria. Clin Microbiol Infect 2017; 23 (10) 697-703
  • 82 Liapikou A, Cilloniz C, Palomeque A, Torres T. Emerging antibiotics for community-acquired pneumonia. Expert Opin Emerg Drugs 2019; 24 (04) 221-231
  • 83 Eraikhuemen N, Julien D, Kelly A, Lindsay T, Lazaridis D. Treatment of community-acquired pneumonia: a focus on lefamulin. Infect Dis Ther 2021; 10 (01) 149-163
  • 84 Bidell MR, Pai MAP, Lodise TP. Use of oral tetracyclines in the treatment of adult patients with community-acquired bacterial pneumonia: a literature review on the often-overlooked antibiotic class. Antibiotics (Basel) 2020; 9 (12) 905
  • 85 Lupia T, Pallotto C, Corcione S, Boglione L, De Rosa FG. Ceftobiprole perspective: current and potential future indications. Antibiotics (Basel) 2021; 10 (02) 170
  • 86 He H, Wunderink RG. Staphylococcus aureus pneumonia in the community. Semin Respir Crit Care Med 2020; 41 (04) 470-479
  • 87 Torres A, Chalmers JD, Dela Cruz CS. et al. Challenges in severe community-acquired pneumonia: a point-of-view review. Intensive Care Med 2019; 45 (02) 159-171
  • 88 Saura O, Chommeloux J, Levy D, Assouline B, Lefevre L, Luyt CE. Updates in the management of respiratory virus infections in ICU patients: revisiting the non-SARS-CoV-2 pathogens. Expert Rev Anti Infect Ther 2022; 20 (12) 1537-1550
  • 89 Ramirez J, Peyrani P, Wiemken T, Chaves SS, Fry AM. A randomized study evaluating the effectiveness of oseltamivir initiated at the time of hospital admission in adults hospitalized with influenza-associated lower respiratory tract infections. Clin Infect Dis 2018; 67 (05) 736-742
  • 90 Marty FM, Vidal-Puigserver J, Clark C. et al. Intravenous zanamivir or oral oseltamivir for hospitalised patients with influenza: an international, randomised, double-blind, double-dummy, phase 3 trial. Lancet Respir Med 2017; 5 (02) 135-146
  • 91 Dequin PF, Meziani F, Quenot JP. et al; CRICS-TriGGERSep Network. Hydrocortisone in severe community-acquired pneumonia. N Engl J Med 2023; 388 (21) 1931-1941
  • 92 Meduri GU, Shih MC, Bridges L. et al; ESCAPe Study Group. Low-dose methylprednisolone treatment in critically ill patients with severe community-acquired pneumonia. Intensive Care Med 2022; 48 (08) 1009-1023
  • 93 Torres A, Sibila O, Ferrer M. et al. Effect of corticosteroids on treatment failure among hospitalized patients with severe community-acquired pneumonia and high inflammatory response: a randomized clinical trial. JAMA 2015; 313 (07) 677-686
  • 94 Marik P, Kraus P, Sribante J, Havlik I, Lipman J, Johnson DW. Hydrocortisone and tumor necrosis factor in severe community-acquired pneumonia. A randomized controlled study. Chest 1993; 104 (02) 389-392
  • 95 Confalonieri M, Urbino R, Potena A. et al. Hydrocortisone infusion for severe community-acquired pneumonia: a preliminary randomized study. Am J Respir Crit Care Med 2005; 171 (03) 242-248
  • 96 El-Ghamrawy A, Shokeir MH, Esmat AA. Effects of low-dose hydrocortisone in ICU patients with severe community-acquired pneumonia. Egypt J Chest Dis Tuberc 2006; 2006 (55) 91-99
  • 97 Sabry NA, Omar EED. Corticosteroids and ICU course of community acquired pneumonia in Egyptian settings. Pharmacy (Basel) 2011; 2 (02) 73-81
  • 98 Reza Shariatzadeh M, Huang JQ, Marrie TJ. Differences in the features of aspiration pneumonia according to site of acquisition: community or continuing care facility. J Am Geriatr Soc 2006; 54 (02) 296-302
  • 99 Mandell LA, Niederman MS. Aspiration pneumonia. N Engl J Med 2019; 380 (07) 651-663
  • 100 Suzuki J, Ikeda R, Kato K. et al. Characteristics of aspiration pneumonia patients in acute care hospitals: a multicenter, retrospective survey in Northern Japan. PLoS One 2021; 16 (07) e0254261
  • 101 Gupte T, Knack A, Cramer JD. Mortality from aspiration pneumonia: incidence, trends, and risk factors. Dysphagia 2022; 37 (06) 1493-1500
  • 102 Bowerman TJ, Zhang J, Waite LM. Antibacterial treatment of aspiration pneumonia in older people: a systematic review. Clin Interv Aging 2018; 13: 2201-2213
  • 103 Kadowaki M, Demura Y, Mizuno S. et al. Reappraisal of clindamycin IV monotherapy for treatment of mild-to-moderate aspiration pneumonia in elderly patients. Chest 2005; 127 (04) 1276-1282
  • 104 Marumo S, Teranishi T, Higami Y, Koshimo Y, Kiyokawa H, Kato M. Effectiveness of azithromycin in aspiration pneumonia: a prospective observational study. BMC Infect Dis 2014; 14 (01) 685
  • 105 Sun T, Sun L, Wang R. et al. Clinical efficacy and safety of moxifloxacin versus levofloxacin plus metronidazole for community-acquired pneumonia with aspiration factors. Chin Med J (Engl) 2014; 127 (07) 1201-1205
  • 106 Hasegawa S, Shiraishi A, Yaegashi M, Hosokawa N, Morimoto K, Mori T. Ceftriaxone versus ampicillin/sulbactam for the treatment of aspiration-associated pneumonia in adults. J Comp Eff Res 2019; 8 (15) 1275-1284
  • 107 Oi I, Ito I, Tanabe N. et al. Cefepime vs. meropenem for moderate-to-severe pneumonia in patients at risk for aspiration: an open-label, randomized study. J Infect Chemother 2020; 26 (02) 181-187
  • 108 Yoshimatsu Y, Aga M, Komiya K. et al. The clinical significance of anaerobic coverage in the antibiotic treatment of aspiration pneumonia: a systematic review and meta-analysis. J Clin Med 2023; 12 (05) 1992
  • 109 Binz J, Heft M, Robinson S, Jensen H, Newton J. Utilizing procalcitonin in a clinical setting to help differentiate between aspiration pneumonia and aspiration pneumonitis. Diagn Microbiol Infect Dis 2023; 105 (01) 115821