Synthesis 2023; 55(14): 2206-2218
DOI: 10.1055/s-0042-1751439
paper
Special Issue Honoring Prof. Guoqiang Lin’s Contributions to Organic Chemistry

Asymmetric Synthesis of Chiral Seven-Membered NHCs, Their Transition-Metal Complexes and Application in Asymmetric ­Catalysis

Jiahong Han
a   Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. of China
b   University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
Yixiao Pan
a   Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. of China
,
Wei Hao
a   Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. of China
,
Qing-Hua Fan
a   Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. of China
b   University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
› Author Affiliations
We thank the National Key Research and Development Program of China (2021YFA1500200), and the National Natural Science Foundation of China (92056108, 92256303) for financial support.


Dedicated to Professor Guoqiang Lin on the occasion of his 80th birthday

Abstract

A series of new chiral seven-membered NHCs were synthesized via Ru-catalyzed asymmetric hydrogenation reactions as the key step. Transition metal such as Rh, Ir and Au can coordinate to the developed NHCs. The crystal structures of the chiral seven-membered NHCs and their transition-metal complexes show a nonplanar framework with torsional twist. Furthermore, the chiral NHCs were applied in asymmetric hydrosilylation reactions, and the corresponding product was obtained with >95% yield and up to 83% ee.

Supporting Information



Publication History

Received: 09 February 2023

Accepted after revision: 02 March 2023

Article published online:
17 April 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected reviews on NHC organometallic catalysis, see:
    • 1a Herrmann WA. Angew. Chem. Int. Ed. 2002; 41: 1290
    • 1b Nolan SP. N-Heterocyclic Carbenes in Synthesis . John Wiley & Sons; New York: 2006
    • 1c Díez-González S, Marion N, Nolan S. Chem. Rev. 2009; 109: 3612
    • 1d Wang F, Liu L.-j, Wang W, Li S, Shi M. Coord. Chem. Rev. 2012; 256: 804
    • 1e Hopkinson MN, Richter C, Schedler M, Glorius F. Nature 2014; 510: 485
    • 1f Janssen-Müller D, Schlepphorst C, Glorius F. Chem. Soc. Rev. 2017; 46: 4845
    • 1g Huynh HV. Chem. Rev. 2018; 118: 9457
    • 1h Thongpaen J, Manguin R, Baslé O. Angew. Chem. Int. Ed. 2020; 59: 10242
    • 1i Foster D, Borhanuddin SM, Dorta R. Dalton Trans. 2021; 17467

      For selected reviews on NHC organocatalysis, see:
    • 2a Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
    • 2b Bugaut X, Glorius F. Chem. Soc. Rev. 2012; 41: 3511
    • 2c Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
    • 2d Song R, Xie Y, Jin Z, Chi YR. Angew. Chem. Int. Ed. 2021; 60: 26026

      For selected reviews on NHC synthesis, see:
    • 3a Hahn FE, Jahnke MC. Angew. Chem. Int. Ed. 2008; 47: 3122
    • 3b Benhamou L, Chardon E, Lavigne G, Bellemin-Laponnaz S, César V. Chem. Rev. 2011; 111: 2705
  • 4 Arduengo AJ, Harlow RL, Kiline M. J. Am. Chem. Soc. 1991; 113: 361
    • 5a Schwab P, France MB, Ziller JW, Grubbs RH. Angew. Chem., Int. Ed. Engl. 1995; 34: 2039
    • 5b Scholl M, Ding S, Lee CW, Grubbs RH. Org. Lett. 1999; 1: 953
    • 5c Bielawski CW, Grubbs RH. Angew. Chem. Int. Ed. 2000; 39: 2903
    • 5d Grubbs RH. Angew. Chem. Int. Ed. 2006; 45: 3760
  • 6 Breslow R. J. Am. Chem. Soc. 1958; 80: 3719
    • 7a Bourissou D, Guerret O, Gabbaï FP, Bertrand G. Chem. Rev. 2000; 100: 39
    • 7b Despagnet-Ayoub E, Grubbs RH. J. Am. Chem. Soc. 2004; 126: 10198
  • 8 Li J, Shen W.-X, Li X.-R. Curr. Org. Chem. 2012; 16: 2879
    • 9a Scarborough CC, Grady MJ. W, Guzei IA, Gandhi BA, Bunel EE, Stahl SS. Angew. Chem. Int. Ed. 2005; 44: 5269
    • 9b Scarborough CC, Popp BV, Guzei IA, Stahl SS. J. Organomet. Chem. 2005; 690: 6143
    • 9c Rogers MM, Wendlandt JE, Guzei IA. Stahl S. S. Org. Lett. 2006; 8: 2257
    • 9d Scarborough CC, Guzei IA, Stahl SS. Dalton Trans. 2009; 2284
    • 10a Jazzar R, Liang H, Donnadieu B, Bertrand G. J. Organomet. Chem. 2006; 691: 3201
    • 10b Iglesias M, Beetstra DJ, Knight JC, Ooi L.-L, Stasch A, Coles S, Male L, Hursthouse MB, Cavell KJ, Dervisi A, Fallis IA. Organometallics 2008; 27: 3279
    • 10c Iglesias M, Beetstra DJ, Kariuki B, Cavell KJ, Dervisi A, Fallis IA. Eur. J. Inorg. Chem. 2009; 1913
    • 10d Binobaid A, Iglesias M, Beetstra D, Dervisi A, Fallis I, Cavell KJ. Eur. J. Inorg. Chem. 2010; 5426
    • 10e Hudnall TW, Tennyson AG, Bielawski CW. Organometallics 2010; 29: 4569
    • 10f Iglesias M, Beetstra DJ, Cavell KJ, Dervisi A, Fallis IA, Kariuki B, Harrington RW, Clegg W, Horton PN, Coles SJ, Hursthouse MB. Eur. J. Inorg. Chem. 2010; 1604
    • 10g Dunsford JJ, Cavell KJ. Dalton Trans. 2011; 9131
    • 10h Dunsford JJ, Cavell KJ, Kariuki B. J. Organomet. Chem. 2011; 696: 188
    • 10i Lu WY, Cavell KJ, Wixey JS, Kariuki B. Organometallics 2011; 30: 5649
    • 10j Arii H, Amari T, Kobayashi J, Mochida K, Kawashima T. Angew. Chem. Int. Ed. 2012; 51: 6738
    • 10k Dunsford JJ, Cavell KJ, Kariuki BM. Organometallics 2012; 31: 4118
    • 10l Page MJ, Lu WY, Poulten RC, Carter E, Algarra AG, Kariuki BM, Macgregor SA, Mahon MF, Cavell KJ, Murphy DM, Whittlesey MK. Chem. Eur. J. 2013; 19: 2158
    • 10m Karaca E. Ö, Akkoç M, Öz E, Altin S, Dorcet V, Roisnel T, Gürbüz N, Çelik Ö, Bayri A, Bruneau C, Yaşar S, Özdemir I. J. Coord. Chem. 2017; 70: 1270

      For selected examples on chiral seven-membered NHCs, see:
    • 11a Iglesias M, Beetstra DJ, Stasch A, Horton PN, Hursthouse MB, Coles SJ, Kingsley JC, Dervisi A, Fallis IA. Organometallics 2007; 26: 4800
    • 11b Reddy PV. G, Tabassum S, Blanrue A, Wilhelm R. Chem. Commun. 2009; 5910
    • 11c Scarborough CC, Bergant A, Sazama GT, Guzei IA, Spencer LC, Stahl SS. Tetrahedron 2009; 65: 5084
    • 11d Newman PD, Cavell KJ, Kariuki BM. Organometallics 2010; 29: 2724
    • 11e Koppenwallner M, Rais E, Uzarewicz-Baig M, Tabassum S, Gilani MA, Wilhelm R. Synthesis 2015; 47: 789

      For selected examples on catalytic reaction by seven-membered NHCs, see:
    • 12a Özdemir I, Gürbüz N, Gök Y, Çetinkaya E, Çetinkaya B. Synlett 2005; 2394
    • 12b Hauwert P, Dunsford JJ, Tromp DS, Weigand JJ, Lutz M, Cavell KJ, Elsevier CJ. Organometallics 2013; 32: 131
    • 12c Rae J, Hu YC, Procter DJ. Chem. Eur. J. 2014; 20: 13143
    • 12d Mori K, Akiyama M, Inada K, Imamura Y, Ishibashi Y, Takahira Y, Nozaki K, Okazoe T. J. Am. Chem. Soc. 2021; 143: 20980
    • 13a Wang T, Chen F, Qin J, He Y.-M, Fan Q.-H. Angew. Chem. Int. Ed. 2013; 52: 7172
    • 13b Ma W, Zhang J, Xu C, Chen F, He Y.-M, Fan Q.-H. Angew. Chem. Int. Ed. 2016; 55: 12891
  • 14 Chen M, Hu J, Tang X, Zhu Q. Curr. Org. Synth. 2019; 16: 173
  • 15 Stephens DE, Lakey-Beitia J, Chavez G, Ilie C, Armana HD, Larionov OV. Chem. Commun. 2015; 51: 9507
  • 16 Zhang Y.-M, Yuan M.-L, Liu W.-P, Xie J.-H. Org. Lett. 2018; 20: 4486