Klin Monbl Augenheilkd 2017; 234(04): 577-583
DOI: 10.1055/s-0042-121335
Klinische Studie
Georg Thieme Verlag KG Stuttgart · New York

Prominent Optic Disc Featured in Inherited Retinopathy

Papillenprominenz bei erblich bedingten Retinopathien
M. G. Todorova
1   Department of Ophthalmology, University of Basel, Switzerland (Chairman: Prof. Hendrik Scholl)
,
R. I. Bojinova
2   University of Montreal – 495 Prince Arthur West, Montreal, Canada
,
C. Valmaggia
3   Department of Ophthalmology, Cantonal Hospital, St. Gallen, Switzerland
,
D. F. Schorderet
4   IRO – Institute for Research in Ophthalmology, Sion, Switzerland
5   Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland
6   School of Life Sciences, Federal Institute of Technology, Lausanne, Switzerland
› Author Affiliations
Further Information

Publication History

Publication Date:
01 February 2017 (online)

Abstract

Background We investigated the relationship between prominent optic disc (POD) and inherited retinal dystrophy (IRD).

Patients and Methods A cross-sectional consecutive study was performed in 10 children and 11 adults of 7 non-related families. We performed clinical phenotyping, including a detailed examination, fundus autofluorescence, and colour fundus and OCT imaging. Genetic testing was subsequently performed for all family members presenting retinal pathology.

Results In 4 members of a 3-generation family, hyperfluorescent deposits on the surface of POD were related to a p.(L224M) heterozygous mutation in BEST1. In the second family, one member presented deposits located on the surface on hyperaemic OD and a compound p.(R141H);(A195V) mutation in BEST1. In the third family, POD was observed in father and child with early onset cone-rod dystrophy and a novel autosomal recessive p.(W31*) homozygous mutation in ABCA4. In the fourth family, POD with “mulberry-like” deposits and attenuated vessels were observed in a 7-year old girl, with a mutation in USH1A, and with early onset rod-cone dystrophy, associated with hearing loss. In the fifth family, blurry OD with tortuous vessels was observed in 4 consanguineous female carriers and a hemizygous boy with a p.(R200H) mutation in the X-linked retinoschisis RS1. In the sixth family, a mother and her son were both affected with POD and attenuated peripapillary vessels, and presented with a p.(Y836C) heterozygous mutation in TOPORS, thus confirming autosomal dominant RP. In the seventh family, in 3 family members with POD, compound p.(L541P;A1038 V);(G1961E) mutations in ABCA4 confirmed the diagnosis of Stargardt disease.

Conclusions A variety of OD findings are found in a genetically heterogeneous group of IRDs. In the presence of POD, an inherited progressive photoreceptor disease should be ruled out.

Zusammenfassung

Hintergrund Wir untersuchten mögliche Zusammenhänge einer Papillenprominenz (POD) unter verschiedenen erblich bedingten Netzhauterkrankungen (IRDs).

Material und Methoden Querschnittsstudie an 10 Kindern und 11 Erwachsenen aus 7 nicht miteinander verwandten betroffenen Familien. Der klinische Phänotyp wurde mithilfe einer gründlichen klinischen Untersuchung einschließlich Fundusautofluoreszenz-Aufnahmen, Farbfotodokumentation und OCT-Bildgebung bestimmt und mit der genetischen Abklärung aller teilnehmenden Familienmitglieder ergänzt.

Ergebnisse In 4 Mitgliedern innerhalb einer 3-Generationen-Familie zeigten sich oberflächliche, hyperfluoreszente Ablagerungen an der Papille sowie eine POD in Zusammenhang mit einer heterozygoten Mutation in p.(L224M) im BEST1-Gen. In der zweiten Familie zeigte ein Patient oberflächliche Ablagerungen auf einer hyperämen Papille in Zusammengang mit einer p.(R141H);(A195V) Mutation im BEST1-Gen. In der dritten Familie fanden wir eine POD im Rahmen einer früh einsetzenden Zapfen-Stäbchen-Dystrophie bei Vater und Kind in Zusammengang mit einer autosomal rezessiven homozygoten Neumutation in p.(W31*) im ABCA4-Gen. Innerhalb der vierten Familie fanden wir bei einem 7-jährigen Mädchen mit einer früh einsetzenden Stäbchen-Zapfen-Dystrophie, begleitet von Hörverlust und einer Mutation im USH1A-Gen, beerenartige Ablagerungen an der Papille sowie verdünnte Netzhautgefäße. Innerhalb der fünften Familie zeigten sich eine POD und Tortuositas vasorum bei 4 verwandten weiblichen Trägerinnen und einem betroffenen Jungen mit einer homozygoten p.(R200H)-Mutation im RS1-Gen im Zusammenhang mit einer X-chromosomalen Retinoschisis. In der sechsten Familie fanden wir bei einer Mutter und ihrem Sohn, beide betroffen von einer autosomal dominanten RP mit einer heterozygoten p.(Y836C)-Mutation im TOPORS-Gen, sowohl eine POD als auch verdünnte peripapilläre Gefäße. Bei der siebten Familie zeigten 3 Familienmitglieder eine POD. Die genetische Abklärung ergab bei allen eine p.(L541P;A1038 V);(G1961E) Mutation im ABCA4-Gen und bestätigte unsere Diagnose eines Morbus Stargardt.

Schlussfolgerung Innerhalb der sehr heterogenen Gruppe der IRDs finden sich unterschiedliche Papillenbefunde. Bei einer Papillenprominenz sollte ein genetisch bedingter Photorezetorverlust ausgeschlossen werden.

 
  • References

  • 1 Chizzolini M, Galan A, Milan E. et al. Good epidemiologic practice in retinitis pigmentosa: from phenotyping to biobanking. Curr Genomics 2011; 12: 260-266
  • 2 Ammann F, Klein D, Franceschetti A. Genetic and epidemiological investigations on pigmentary degeneration of the retina and allied disorders in Switzerland. J Neurol Sci 1965; 2: 183-196
  • 3 Puech B, Kostrubiec B, Hache JC. et al. [Epidemiology and prevalence of hereditary retinal dystrophies in the Northern France]. J Fr Ophtalmol 1991; 14: 153-164
  • 4 Novack RL, Foos RY. Drusen of the optic disk in retinitis pigmentosa. Am J Ophthalmol 1987; 103: 44-47
  • 5 Grover S, Fishman GA, Brown jr. J. Frequency of optic disc or parapapillary nerve fiber layer drusen in retinitis pigmentosa. Ophthalmology 1997; 104: 295-298
  • 6 Edwards A, Grover S, Fishman GA. Frequency of photographically apparent optic disc and parapapillary nerve fiber layer drusen in Usher syndrome. Retina 1996; 16: 388-392
  • 7 Gaillard MC, Wolfensberger TJ, Uffer S. et al. [Optical coherence tomography in Malattia Leventinese]. Klin Monatsbl Augenheilkd 2005; 222: 180-185
  • 8 Vaghefi HA, Green WR, Kelley JS. et al. Correlation of clinicopathologic findings in a patient. Congenital night blindness, branch retinal vein occlusion, cilioretinal artery, drusen of the optic nerve head, and intraretinal pigmented lesion. Arch Ophthalmol 1978; 96: 2097-2104
  • 9 Tarkkanen A, Raitta C, Perheentupa J. Mulibrey nanism, an autosomal recessive syndrome with ocular involvement. Acta Ophthalmol (Copenh) 1982; 60: 628-633
  • 10 Sturm V, Leiba H, Menke MN. et al. Ophthalmological findings in Joubert syndrome. Eye (Lond) 2010; 24: 222-225
  • 11 El-Koofy NM, El-Mahdy R, Fahmy ME. et al. Alagille syndrome: clinical and ocular pathognomonic features. Eur J Ophthalmol 2011; 21: 199-206
  • 12 Lam WW, Newman WD, MacRae M. Adams-Oliver syndrome associated with bilateral anterior polar cataracts and optic disk drusen. J AAPOS 2011; 15: 299-301
  • 13 Sari A, Okuyaz C, Adiguzel U. et al. Uncommon associations with ataxia-telangiectasia: vitiligo and optic disc drusen. Ophthalmic Genet 2009; 30: 19-22
  • 14 Coleman K, Ross MH, Mc Cabe M. et al. Disk drusen and angioid streaks in pseudoxanthoma elasticum. Am J Ophthalmol 1991; 112: 166-170
  • 15 Kaufman SJ, Goldberg MF, Orth DH. et al. Autosomal dominant vitreoretinochoroidopathy. Arch Ophthalmol 1982; 100: 272-278
  • 16 Han DP, Lewandowski MF. Electro-oculography in autosomal dominant vitreoretinochoroidopathy. Arch Ophthalmol 1992; 110: 1563-1567
  • 17 Boon CJ, Klevering BJ, den Hollander AI. et al. Clinical and genetic heterogeneity in multifocal vitelliform dystrophy. Arch Ophthalmol 2007; 125: 1100-1106
  • 18 Boon CJ, Klevering BJ, Leroy BP. et al. The spectrum of ocular phenotypes caused by mutations in the BEST1 gene. Prog Retin Eye Res 2009; 28: 187-205
  • 19 Lacassagne E, Dhuez A, Rigaudière F. et al. Phenotypic variability in a French family with a novel mutation in the BEST1 gene causing multifocal best vitelliform macular dystrophy. Mol Vis 2011; 17: 309-322
  • 20 Marmor MF, Fulton AB, Holder GE. et al. ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 2009; 118: 69-77
  • 21 Marmor MF, Brigell MG, McCulloch DL. et al. ISCEV standard for clinical electro-oculography (2010 update). Doc Ophthalmol 2011; 122: 1-7
  • 22 Hood DC, Bach M, Brigell M. et al. ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc Ophthalmol 2012; 124: 1-13
  • 23 Schorderet DF, Iouranova A, Favez T. et al. IROme, a new high-throughput molecular tool for the diagnosis of inherited retinal dystrophies. Biomed Res Int 2013; 2013: 198089
  • 24 Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics 2007; 23: 1289-1291
  • 25 Untergasser A, Cutcutache I, Koressaar T. et al. Primer3-new capabilities and interfaces. Nucleic Acids Res 2012; 40: e115
  • 26 Krämer F, White K, Pauleikhoff D. et al. Mutations in the VMD2 gene are associated with juvenile-onset vitelliform macular dystrophy (Best disease) and adult vitelliform macular dystrophy but not age-related macular degeneration. Eur J Hum Gen 2000; 8: 286-292
  • 27 Borman AD, Davidson AE, OʼSullivan J. et al. Childhood-onset autosomal recessive bestrophinopathy. Arch Ophthalmol 2011; 129: 1088-1093
  • 28 Zernant J, Schubert C, Im KM. et al. Analysis of the ABCA4 gene by next-generation sequencing. Invest Ophthalmol Vis Sci 2011; 52: 8479-8487
  • 29 Bowne SJ, Sullivan LS, Gire AI. et al. Mutations in the TOPORS gene cause 1% of autosomal dominant retinitis pigmentosa. Mol Vis 2008; 14: 922-927
  • 30 Marc RE, Jones BW, Watt CB. et al. Neural remodeling in retinal degeneration. Prog Retin Eye Res 2003; 22: 607-655
  • 31 Marc RE, Jones BW. Retinal remodeling in inherited photoreceptor degenerations. Mol Neurobiol 2003; 28: 139-147
  • 32 Hamel C. Retinitis pigmentosa. Orphanet J Rare Dis 2006; 11: 40
  • 33 Sahaboglu A, Paquet-Durand O, Dietter J. et al. Retinitis pigmentosa: rapid neurodegeneration is governed by slow cell death mechanisms. Cell Death Dis 2013; 4: e488
  • 34 Lopez Torres LT, Türksever C, Schötzau A. et al. Peripapillary retinal vessel diameter correlates with mfERG alterations in retinitis pigmentosa. Acta Ophthalmol 2015; 93: e527-e533
  • 35 Hwang YH, Kim SW, Kim YY. et al. Optic nerve head, retinal nerve fiber layer, and macular thickness measurements in young patients with retinitis pigmentosa. Curr Eye Res 2012; 37: 914-920
  • 36 Hood DC, Lin CE, Lazow MA. et al. Thickness of receptor and post-receptor retinal layers in patients with retinitis pigmentosa measured with frequency-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2009; 50: 2328-2336
  • 37 Xue K, Wang M, Chen J. et al. Retinal nerve fiber layer analysis with scanning laser polarimetry and RTVue-OCT in patients of retinitis pigmentosa. Ophthalmologica 2013; 229: 38-42
  • 38 Wirtschafter JD. Optic nerve axons and acquired alterations in the appearance of the optic disc. Trans Am Ophthalmol Soc 1983; 1034-1091
  • 39 Merin S, Auerbach E. Retinitis pigmentosa. Surv Ophthalmol 1976; 20: 303-346
  • 40 Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet 2006; 368: 1795-1809
  • 41 Ma Y, Kawasaki R, Dobson L. et al. Quantitative analysis of retinal vessel attenuation in eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci 2012; 53: 4306-4314
  • 42 Eysteinsson T, Hardarson SH, Bragason D. et al. Retinal vessel oxygen saturation and vessel diameter in retinitis pigmentosa. Acta Ophthalmol 2014; 92: 449-453
  • 43 Bojinova RI, Türksever C, Schötzau A. et al. Reduced metabolic function and structural alterations in inherited retinal dystrophies: investigating the effect of peripapillary vessel oxygen saturation and vascular diameter on the retinal nerve fiber layer thickness. Acta Ophthalmol 2016; DOI: 10.1111/aos.13247.
  • 44 Fariss RN, Li ZY, Milam AH. Abnormalities in rod photoreceptors, amacrine cells, and horizontal cells in human retinas with retinitis pigmentosa. Am J Ophthalmol 2000; 129: 215-223
  • 45 Auw-Haedrich C, Staubach F, Witschel H. Optic disk drusen. Surv Ophthalmol 2002; 47: 515-532
  • 46 Petrukhin K, Koisti MJ, Bakall B. et al. Identification of the gene responsible for Best macular dystrophy. Nat Genet 1998; 19: 241-247
  • 47 Marquardt A, Stöhr H, Passmore LA. et al. Mutations in a novel gene, VMD2, encoding a protein of unknown properties cause juvenile-onset vitelliform macular dystrophy (Bestʼs disease). Hum Mol Genet 1998; 7: 1517-1525
  • 48 Marmorstein AD, Marmorstein LY, Rayborn M. et al. Bestrophin, the product of the Best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium. Proc Natl Acad Sci U S A 2000; 97: 12758-12763
  • 49 Kay CN, Abramoff MD, Mullins RF. et al. Three-dimensional distribution of the vitelliform lesion, photoreceptors, and retinal pigment epithelium in the macula of patients with best vitelliform macular dystrophy. Arch Ophthalmol 2012; 130: 357-364