Klin Monbl Augenheilkd 2016; 233(08): 938-944
DOI: 10.1055/s-0042-102060
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Hornhautvernetzung mit Riboflavin und UV-A-Licht bei Keratokonus

Corneal Cross-Linking with Riboflavin and UVA in Keratoconus
F. Raiskup
1   Klinik für Augenheilkunde, Universitätsklinikum C. G. Carus Dresden
,
N. Terai
1   Klinik für Augenheilkunde, Universitätsklinikum C. G. Carus Dresden
,
V. Veliká
2   Klinik für Augenheilkunde, Universitätsklinikum Hradec Králové, Tschechische Republik
,
E. Spörl
1   Klinik für Augenheilkunde, Universitätsklinikum C. G. Carus Dresden
› Author Affiliations
Further Information

Publication History

eingereicht 15 November 2015

akzeptiert 26 January 2016

Publication Date:
07 April 2016 (online)

Zusammenfassung

Beim Keratokonus handelt es sich um eine degenerative ektatische Erkrankung des Auges, bei der die Hornhaut zunehmend ihre Stabilität verliert. Infolgedessen kommt es zu einer Vorwölbung derselben mit zunehmender Stromaausdünnung. Es resultieren ein irregulärer Hornhautastigmatismus sowie eine hohe Myopie, die zu einer progredienten Sehverschlechterung führen. Es sind beide Augen betroffen, allerdings in asymmetrischer Ausprägung. Aufgrund des jungen Alters bei Erstmanifestation übt die Erkrankung einen erheblichen Einfluss auf die weitere Lebensqualität und -planung der Patienten aus. Der Krankheitsverlauf bei dieser primären Hornhautektasie ist sehr variabel und beeinflusst die Entscheidung in Bezug auf die richtige Behandlungsstrategie. Ein international anerkanntes Therapieregime in der Behandlung des progressiv verlaufenden Keratokonus ist die Hornhautkollagenvernetzung, auch „corneal collagen cross-linking“ (CXL) genannt. Dieses Verfahren wird eingesetzt, um ein Fortschreiten dieser Ektasie zu verzögern oder sogar zum Stillstand zu bringen. Die Notwendigkeit einer Hornhautverpflanzung kann damit reduziert werden.

Abstract

Changes in the biomechanical properties of the human cornea play an important role in the pathogenesis of corneal ectatic diseases. Many different pathological conditions in the cornea may reduce its biomechanical resistance. Corneal collagen cross-linking (CXL) has emerged as a promising technique to slow or even to stop the progression of ectasia. In this procedure, riboflavin (vitamin B2) is administered in conjunction with ultraviolet A light (UVA, 365 nm). This interaction causes the formation of reactive oxygen species, leading to additional covalent bonds between collagen molecules, with consequent biomechanical stiffening of the cornea. Although this method is not yet accepted as an evidence-based treatment of corneal ectasia, the results of prospective, randomised studies of CXL used in the treatment of this pathological entity show significant changes in the properties of corneal tissue. This procedure is currently the only aetiopathogenetic treatment of ectatic eyes that can delay or stop the process of cornea destabilisation, reducing the necessity for keratoplasty. Despite promising results, CXL is associated with issues that include long-term safety and duration of the stabilising effect.

 
  • Literatur

  • 1 Raiskup F, Spoerl E. Corneal crosslinking with riboflavin and ultraviolet A. I. Principles. Ocul Surf 2013; 11: 65-74
  • 2 OʼBrart DP, Patel P, Lascaratos G et al. Corneal cross-linking to halt the progression of keratoconus and corneal ectasia: seven year follow-up. Am J Ophthalmol 2015; 160: 1154-1163
  • 3 Raiskup F, Theuring A, Pillunat LE et al. Corneal collagen crosslinking with riboflavin and ultraviolet-A light in progressive keratoconus: ten-year results. J Cataract Refract Surg 2015; 41: 41-46
  • 4 Wittig-Silva C, Chan E, Islam FM et al. A randomized, controlled trial of corneal collagen cross-linking in progressive keratoconus: three-year results. Ophthalmology 2014; 121: 812-821
  • 5 Hersh PS, Greenstein SA, Fry KL. Corneal collagen crosslinking for keratoconus and corneal ectasia: one-year results. J Cataract Refract Surg 2011; 37: 149-160
  • 6 Sandvik GF, Thorsrud A, Råen M et al. Does corneal collagen cross-linking reduce the need for keratoplasties in patients with keratoconus?. Cornea 2015; 34: 991-995
  • 7 Zadnik K, Barr JT, Edrington TB et al. Baseline findings in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study. Invest Ophthalmol Vis Sci 1998; 39: 2537-2546
  • 8 Kymes SM, Walline JJ, Zadnik K et al. Changes in the quality-of-life of people with keratoconus. Am J Ophthalmol 2008; 145: 611-617
  • 9 Maeno A, Naor J, Lee HM et al. Three decades of corneal transplantation: indications and patient characteristics. Cornea 2000; 19: 7-11
  • 10 Winkler M, Chai D, Kriling S et al. Nonlinear optical macroscopic assessment of 3-D corneal collagen organization and axial biomechanics. Invest Ophthalmol Vis Sci 2011; 52: 8818-8827
  • 11 Rehany U, Lahav M, Shoshan S. Collagenolytic activity in keratoconus. Ann Ophthalmol 1982; 14: 751-754
  • 12 Wollensak J, Buddecke E. Biochemical studies on human corneal proteoglycans – a comparison of normal and keratoconic eyes. Graefes Arch Clin Exp Ophthalmol 1990; 228: 517-523
  • 13 Sawaguchi S, Yue BY, Chang I et al. Proteoglycan molecules in keratoconus corneas. Invest Ophthalmol Vis Sci 1991; 32: 1846-1853
  • 14 Kao WW, Vergnes JP, Ebert J et al. Increased collagenase and gelatinase activities in keratoconus. Biochem Biophys Res Commun 1982; 107: 929-936
  • 15 Sawaguchi S, Yue BY, Sugar J et al. Lysosomal enzyme abnormalities in keratoconus. Arch Ophthalmol 1989; 107: 1507-1510
  • 16 Zhou L, Sawaguchi S, Twining SS et al. Expression of degradative enzymes and protease inhibitors in corneas with keratoconus. Invest Ophthalmol Vis Sci 1998; 39: 1117-1124
  • 17 Daxer A, Fratzl P. Collagen fibril orientation in the human corneal stroma and its implication in keratoconus. Invest Ophthalmol Vis Sci 1997; 38: 121-129
  • 18 Radner W, Zehetmayer M, Skorpik C et al. Altered organization of collagen in the apex of keratoconus corneas. Ophthalmic Res 1998; 30: 327-332
  • 19 Spoerl E, Huhle M, Seiler T. Artificial stiffening of the cornea by induction of intrastromal cross-links. Ophthalmologe 1997; 94: 902-906
  • 20 Spoerl E, Huhle M, Seiler T. Induction of cross-links in corneal tissue. Exp Eye Res 1998; 66: 97-103
  • 21 Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-A-induced collagen cross-linking for the treatment of keratoconus. Am J Ophthalmol 2003; 135: 620-627
  • 22 Raiskup-Wolf F, Hoyer A, Spoerl E et al. Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus: long-term results. J Cataract Refract Surg 2008; 34: 796-801
  • 23 Sharma N, Suri K, Sehra SV et al. Collagen cross-linking in keratoconus in Asian eyes: visual, refractive and confocal microscopy outcomes in a prospective randomized controlled trial. Int Ophthalmol 2015; 35: 827-832
  • 24 Lang SJ, Messmer EM, Geerling G et al. Prospective, randomized, double-blind trial to investigate the efficacy and safety of corneal cross-linking to halt the progression of keratoconus. BMC Ophthalmol 2015; 15: 78
  • 25 Caporossi A, Mazzotta C, Baiocchi S et al. Age-related long-term functional results after riboflavin UV A corneal cross-linking. J Ophthalmol 2011; 2011: 608041
  • 26 Spoerl E, Zubaty V, Terai N et al. Influence of high-dose cortisol on the biomechanics of incubated porcine corneal strips. J Refract Surg 2009; 25: S794-798
  • 27 Spoerl E, Zubaty V, Raiskup-Wolf F et al. Oestrogen-induced changes in biomechanics in the cornea as a possible reason for keratectasia. Br J Ophthalmol 2007; 91: 1547-1550
  • 28 Bilgihan K, Hondur A, Sul S et al. Pregnancy-induced progression of keratoconus. Cornea 2011; 30: 991-994
  • 29 Hafezi F, Iseli HP. Pregnancy-related exacerbation of iatrogenic keratectasia despite corneal collagen crosslinking. J Cataract Refract Surg 2008; 34: 1219-1221
  • 30 Kappmeyer K, Lanzl IM. Augeninnendruck während und nach dem Spielen von Hoch- und Niedrigwiderstandblasinstrumenten. Ophthalmologe 2010; 107: 41-46
  • 31 Kuo IC, Broman A, Pirouzmanesh A et al. Is there an association between diabetes and keratoconus?. Ophthalmology 2006; 113: 184-190
  • 32 Seiler T, Huhle S, Spoerl E et al. Manifest diabetes and keratoconus: a retrospective case-control study. Graefes Arch Clin Exp Ophthalmol 2000; 238: 822-825
  • 33 Morita A. Tobacco smoke causes premature skin aging. J Dermatol Sci 2007; 48: 169-175
  • 34 Mahmud A, Feely J. Effect of smoking on arterial stiffness and pulse pressure amplification. Hypertension 2003; 41: 183-187
  • 35 Spoerl E, Raiskup-Wolf F, Kuhlisch E et al. Cigarette smoking is negatively associated with keratoconus. J Refract Surg 2008; 24: S737-740
  • 36 Hafezi F, Mrochen M, Iseli HP et al. Collagen crosslinking with ultraviolet-A and hypoosmolar riboflavin solution in thin corneas. J Cataract Refract Surg 2009; 35: 621-624
  • 37 Hafezi F. Limitation of collagen cross-linking with hypoosmolar riboflavin solution: failure in an extremely thin cornea. Cornea 2011; 30: 917-919
  • 38 Reeves SW, Stinnett S, Adelman RA et al. Risk factors for progression to penetrating keratoplasty in patients with keratoconus. Am J Ophthalmol 2005; 140: 607-611
  • 39 Caporossi A, Mazzotta C, Baiocchi S et al. Riboflavin-UVA-induced corneal collagen cross-linking in pediatrics patients. Cornea 2012; 31: 227-231
  • 40 Rabinowitz YS. Keratoconus. Surv Ophthalmol 1998; 42: 297-319
  • 41 Ertan A, Muftuoglu O. Keratoconus clinical findings according to different age and gender groups. Cornea 2008; 27: 1109-1113
  • 42 Cannon DJ, Davison PF. Aging, and crosslinking in mammlian collagen. Exp Aging Res 1977; 3: 87-105
  • 43 Cannon DJ, Foster CS. Collagen crosslinking in keratoconus. Invest Ophthalmol Vis Sci 1978; 17: 63-65
  • 44 Kymionis GD, Portaliou DM, Bouzoukis DI et al. Herpetic keratitis with iritis after corneal crosslinking with riboflavin and ultraviolet A for keratoconus. J Cataract Refract Surg 2007; 33: 1982-1984
  • 45 Pollhammer M, Cursiefen C. Bacterial keratitis early after corneal crosslinking with riboflavin and ultraviolet-A. J Cataract Refract Surg 2009; 35: 588-589
  • 46 Rama P, Di Matteo F, Matuska S et al. Acanthamoeba keratitis with perforation after corneal crosslinking and bandage contact lens use. J Cataract Refract Surg 2009; 35: 788-791
  • 47 Zamora KV, Males JJ. Polymicrobial keratitis after a collagen cross-linking procedure with postoperative use of a contact lens: a case report. Cornea 2009; 28: 474-476
  • 48 Koller T, Mrochen M, Seiler T. Complication and failure rates after corneal crosslinking. J Cataract Refract Surg 2009; 35: 1358-1362
  • 49 Seiler T, Hafezi F. Corneal cross-linking-induced stromal demarcation line. Cornea 2006; 25: 1057-1059
  • 50 Herrmann CI, Hammer T, Duncker GI. „Haze“ oder bandförmige Keratopathie nach Crosslinking-Behandlung. Ophthalmologe 2008; 105: 485-487
  • 51 Mazzotta C, Traversi C, Baiocchi S et al. Corneal healing after riboflavin ultraviolet-A collagen cross-linking determined by confocal laser scanning microscopy in vivo: early and late modifications. Am J Ophthalmol 2008; 146: 527-533
  • 52 Mazzotta C, Balestrazzi A, Baiocchi S et al. Stromal haze after combined riboflavin-UVA corneal collagen cross-linking in keratoconus: in vivo confocal microscopic evaluation. Clin Experiment Ophthalmol 2007; 35: 580-582
  • 53 Greenstein SA, Fry KL, Bhatt J et al. Natural history of corneal haze after collagen crosslinking for keratoconus and corneal ectasia: Scheimpflug and biomicroscopic analysis. J Cataract Refract Surg 2010; 36: 2105-2114
  • 54 Raiskup F, Hoyer A, Spoerl E. Permanent corneal haze after riboflavin-UVA-induced cross-linking in keratoconus. J Refract Surg 2009; 25: S824-828
  • 55 Kymionis GD, Portaliou DM, Diakonis VF et al. Corneal collagen cross-linking with riboflavin and ultraviolet-a irradiation in patients with thin corneas. Am J Ophthalmol 2012; 153: 24-28
  • 56 Gokhale NS. Corneal endothelial damage after collagen cross-linking treatment. Cornea 2011; 30: 1495-1498
  • 57 Bagga B, Phuja S, Murthy S. Endothelial failure after collagen cross-linking with riboflavin and UV-A: case report with literature review. Cornea 2012; 31: 1197-1200
  • 58 Labiris G, Kaloghianni E, Koukoula S et al. Corneal melting after collagen cross-linking for keratoconus: a case report. J Med Case Rep 2011; 5: 152
  • 59 Gokhale NS, Vemuganti GK. Diclofenac-induced acute corneal melt after collagen crosslinking for keratoconus. Cornea 2010; 29: 117-119
  • 60 Faschinger C, Kleinert R, Wedrich A. Beidseitiges Einschmelzen der Hornhaut nach beidseitigem simultanen Kollagen-Crosslinking bei Keratokonus und Down-Syndrom. Ophthalmologe 2010; 107: 951-952 954–955
  • 61 Eberwein P, Auw-Hädrich C, Birnbaum F et al. Hornhauteinschmelzung nach Cross-linking und tiefer lamellärer Keratoplastik („DALK“) bei Keratokonus. Klin Monatsbl Augenheilkd 2008; 225: 96-98
  • 62 Rebenitsch RL, Kymes SM, Walline JJ et al. The lifetime economic burden of keratoconus: a decision analysis using a Markov model. Am J Ophthalmol 2011; 151: 768-773
  • 63 Salmon HA, Chalk D, Stein K et al. Cost effectiveness of collagen crosslinking for progressive keratoconus in the UK NHS. Eye (Lond) 2015; 29: 1504-1511
  • 64 Gomes JAP, Tan D, Rapuano CJ et al. Global Consensus on Keratoconus and Ectatic Diseases. Cornea 2015; 34: 359-369
  • 65 Craig JA, Mahon J, Yellowlees A et al. Epithelium-off photochemical corneal collagen cross-linkage using riboflavin and ultraviolet a for keratoconus and keratectasia: a systematic review and meta-analysis. Ocul Surf 2014; 12: 202-214
  • 66 Sykakis E, Karim R, Evans JR et al. Corneal collagen cross-linking for treating keratoconus. Cochrane Database Syst Rev 2015; (3) CD010621
  • 67 Meiri Z, Keren S, Rosenblatt A et al. Efficacy of corneal cross-linking for the treatment of keratoconus: a systematic review and meta-analysis. Cornea 2016; 35: 417-428
  • 68 Vinciguerra P, Albe E, Trazza S et al. Refractive, topographic, tomographic, and aberrometric analysis of keratoconic eyes undergoing corneal cross-linking. Ophthalmology 2009; 116: 369-378