Semin Musculoskelet Radiol 2021; 25(06): 795-804
DOI: 10.1055/s-0041-1740351
Review Article

Radiofrequency Ablation of Spine Metastases: A Clinical and Technical Approach

Steven Yevich
1   Division of Diagnostic Imaging, Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
,
Stephen Chen
1   Division of Diagnostic Imaging, Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
,
Zeyad Metwalli
1   Division of Diagnostic Imaging, Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
,
Joshua Kuban
1   Division of Diagnostic Imaging, Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
,
Stephen Lee
1   Division of Diagnostic Imaging, Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
,
Peiman Habibollahi
1   Division of Diagnostic Imaging, Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
,
Colin J. McCarthy
1   Division of Diagnostic Imaging, Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
,
David Irwin
1   Division of Diagnostic Imaging, Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
,
Steven Huang
1   Division of Diagnostic Imaging, Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
,
Rahul A. Sheth
1   Division of Diagnostic Imaging, Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
› Author Affiliations

Abstract

Percutaneous radiofrequency ablation (RFA) is an integral component of the multidisciplinary treatment algorithm for both local tumor control and palliation of painful spine metastases. This minimally invasive therapy complements additional treatment strategies, such as pain medications, systemic chemotherapy, surgical resection, and radiotherapy. The location and size of the metastatic lesion dictate preprocedure planning and the technical approach. For example, ablation of lesions along the spinal canal, within the posterior vertebral elements, or with paraspinal soft tissue extension are associated with a higher risk of injury to adjacent spinal nerves. Additional interventions may be indicated in conjunction with RFA. For example, ablation of vertebral body lesions can precipitate new, or exacerbate existing, pathologic vertebral compression fractures that can be prevented with vertebral augmentation. This article reviews the indications, clinical work-up, and technical approach for RFA of spine metastases.



Publication History

Article published online:
22 December 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Roodman GD. Mechanisms of bone metastasis. N Engl J Med 2004; 350 (16) 1655-1664
  • 2 Li S, Peng Y, Weinhandl ED. et al. Estimated number of prevalent cases of metastatic bone disease in the US adult population. Clin Epidemiol 2012; 4: 87-93
  • 3 Loblaw DA, Laperriere NJ, Mackillop WJ. A population-based study of malignant spinal cord compression in Ontario. Clin Oncol (R Coll Radiol) 2003; 15 (04) 211-217
  • 4 Ortiz Gómez JA. The incidence of vertebral body metastases. Int Orthop 1995; 19 (05) 309-311
  • 5 Oster G, Lamerato L, Glass AG. et al. Natural history of skeletal-related events in patients with breast, lung, or prostate cancer and metastases to bone: a 15-year study in two large US health systems. Support Care Cancer 2013; 21 (12) 3279-3286
  • 6 Saad F, Lipton A, Cook R, Chen YM, Smith M, Coleman R. Pathologic fractures correlate with reduced survival in patients with malignant bone disease. Cancer 2007; 110 (08) 1860-1867
  • 7 Figura N, Smith J, Yu HM. Mechanisms of, and adjuvants for, bone Pain. Hematol Oncol Clin North Am 2018; 32 (03) 447-458
  • 8 Chow E, Zeng L, Salvo N, Dennis K, Tsao M, Lutz S. Update on the systematic review of palliative radiotherapy trials for bone metastases. Clin Oncol (R Coll Radiol) 2012; 24 (02) 112-124
  • 9 Kurup AN, Callstrom MR. Ablation of musculoskeletal metastases: pain palliation, fracture risk reduction, and oligometastatic disease. Tech Vasc Interv Radiol 2013; 16 (04) 253-261
  • 10 Deschamps F, Farouil G, de Baere T. Percutaneous ablation of bone tumors. Diagn Interv Imaging 2014; 95 (7-8): 659-663
  • 11 Katsoulakis E, Kumar K, Laufer I, Yamada Y. Stereotactic body radiotherapy in the treatment of spinal metastases. Semin Radiat Oncol 2017; 27 (03) 209-217
  • 12 Gerszten PC, Burton SA, Ozhasoglu C, Welch WC. Radiosurgery for spinal metastases: clinical experience in 500 cases from a single institution. Spine 2007; 32 (02) 193-199
  • 13 Hashmi A, Guckenberger M, Kersh R. et al. Re-irradiation stereotactic body radiotherapy for spinal metastases: a multi-institutional outcome analysis. J Neurosurg Spine 2016; 25 (05) 646-653
  • 14 Sahgal A, Atenafu EG, Chao S. et al. Vertebral compression fracture after spine stereotactic body radiotherapy: a multi-institutional analysis with a focus on radiation dose and the spinal instability neoplastic score. J Clin Oncol 2013; 31 (27) 3426-3431
  • 15 Kaloostian PE, Yurter A, Zadnik PL, Sciubba DM, Gokaslan ZL. Current paradigms for metastatic spinal disease: an evidence-based review. Ann Surg Oncol 2014; 21 (01) 248-262
  • 16 Vega RA, Traylor JI, Habib A, Rhines LD, Tatsui CE, Rao G. Minimally invasive separation surgery for metastases in the vertebral column: a technical report. Oper Neurosurg (Hagerstown) 2020; 18 (06) 606-613
  • 17 Dupuy DE, Safran H, Mayo-Smith WW, Goldberg SN. Radiofrequency ablation of painful osseous metastatic disease. Radiology 1998; 209: 389
  • 18 Goetz MP, Callstrom MR, Charboneau JW. et al. Percutaneous image-guided radiofrequency ablation of painful metastases involving bone: a multicenter study. J Clin Oncol 2004; 22 (02) 300-306
  • 19 Wallace AN, Greenwood TJ, Jennings JW. Use of imaging in the management of metastatic spine disease with percutaneous ablation and vertebral augmentation. AJR Am J Roentgenol 2015; 205 (02) 434-441
  • 20 Di Staso M, Zugaro L, Gravina GL. et al. Can radiotherapy be combined with radiofrequency ablation in the management of symptomatic osteolytic skeletal metastasis?. Clin Oncol (R Coll Radiol) 2011; 23 (01) 65-66
  • 21 Di Staso M, Zugaro L, Gravina GL. et al. A feasibility study of percutaneous radiofrequency ablation followed by radiotherapy in the management of painful osteolytic bone metastases. Eur Radiol 2011; 21 (09) 2004-2010
  • 22 Greenwood TJ, Wallace A, Friedman MV, Hillen TJ, Robinson CG, Jennings JW. Combined ablation and radiation therapy of spinal metastases: a novel multimodality treatment approach. Pain Physician 2015; 18 (06) 573-581
  • 23 Kam NM, Maingard J, Kok HK. et al. Combined vertebral augmentation and radiofrequency ablation in the management of spinal metastases: an update. Curr Treat Options Oncol 2017; 18 (12) 74
  • 24 David E, Kaduri S, Yee A. et al. Initial single center experience: radiofrequency ablation assisted vertebroplasty and osteoplasty using a bipolar device in the palliation of bone metastases. Ann Palliat Med 2017; 6 (02) 118-124
  • 25 Callstrom MR, Charboneau JW, Goetz MP. et al. Painful metastases involving bone: feasibility of percutaneous CT- and US-guided radio-frequency ablation. Radiology 2002; 224 (01) 87-97
  • 26 Ahmed M, Brace CL, Lee Jr FT, Goldberg SN. Principles of and advances in percutaneous ablation. Radiology 2011; 258 (02) 351-369
  • 27 Mayer T, Cazzato RL, De Marini P. et al. Spinal metastases treated with bipolar radiofrequency ablation with increased (>70°C) target temperature: pain management and local tumor control. Diagn Interv Imaging 2021; 102 (01) 27-34
  • 28 Woertler K, Vestring T, Boettner F, Winkelmann W, Heindel W, Lindner N. Osteoid osteoma: CT-guided percutaneous radiofrequency ablation and follow-up in 47 patients. J Vasc Interv Radiol 2001; 12 (06) 717-722
  • 29 Mahnken AH, Bruners P, Delbrück H, Günther RW. Radiofrequency ablation of osteoid osteoma: initial experience with a new monopolar ablation device. Cardiovasc Intervent Radiol 2011; 34 (03) 579-584
  • 30 Ley JC, Jennings J, Baker JC, Hillen T, Tine BAV. Targeted radiofrequency ablation of metastatic posterior vertebral body lesions in patients with soft tissue sarcomas. J Clin Oncol 2013; 31 (15, Suppl): 10585
  • 31 Hillen TJ, Anchala P, Friedman MV, Jennings JW. Treatment of metastatic posterior vertebral body osseous tumors by using a targeted bipolar radiofrequency ablation device: technical note. Radiology 2014; 273 (01) 261-267
  • 32 Wallace AN, Tomasian A, Vaswani D, Vyhmeister R, Chang RO, Jennings JW. Radiographic local control of spinal metastases with percutaneous radiofrequency ablation and vertebral augmentation. AJNR Am J Neuroradiol 2016; 37 (04) 759-765
  • 33 Ma Y, Wallace AN, Waqar SN. et al. Percutaneous image-guided ablation in the treatment of osseous metastases from non–small cell lung cancer. Cardiovasc Intervent Radiol 2018; 41 (05) 726-733
  • 34 Deschamps F, Farouil G, Ternes N. et al. Thermal ablation techniques: a curative treatment of bone metastases in selected patients?. Eur Radiol 2014; 24 (08) 1971-1980
  • 35 Welch BT, Callstrom MR, Morris JM. et al. Feasibility and oncologic control after percutaneous image guided ablation of metastatic renal cell carcinoma. J Urol 2014; 192 (02) 357-363
  • 36 Moynagh MR, Kurup AN, Callstrom MR. Thermal ablation of bone metastases. Semin Intervent Radiol 2018; 35 (04) 299-308
  • 37 Dupuy DE, Liu D, Hartfeil D. et al. Percutaneous radiofrequency ablation of painful osseous metastases: a multicenter American College of Radiology Imaging Network trial. Cancer 2010; 116 (04) 989-997
  • 38 Swarm RA, Paice JA, Anghelescu DL. et al. BCPS. Adult Cancer Pain, Version 3.2019, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2019; 17 (08) 977-1007
  • 39 Berenson J, Pflugmacher R, Jarzem P. et al. Cancer Patient Fracture Evaluation (CAFE) Investigators. Balloon kyphoplasty versus non-surgical fracture management for treatment of painful vertebral body compression fractures in patients with cancer: a multicentre, randomised controlled trial. Lancet Oncol 2011; 12 (03) 225-235
  • 40 Pron G, Holubowich C, Kaulback K. Health Quality Ontario. Vertebral augmentation involving vertebroplasty or kyphoplasty for cancer-related vertebral compression fractures: a systematic review. Ont Health Technol Assess Ser 2016; 16 (11) 1-202
  • 41 Bagla S, Sayed D, Smirniotopoulos J. et al. Multicenter prospective clinical series evaluating radiofrequency ablation in the treatment of painful spine metastases. Cardiovasc Intervent Radiol 2016; 39 (09) 1289-1297
  • 42 Sayed D, Jacobs D, Sowder T. et al. Spinal radiofrequency ablation combined with cement augmentation for painful spinal vertebral metastases: a single-center prospective study. Pain Physician 2019; 22 (05) E441-E449
  • 43 Levy J, Hopkins T, Morris J. et al. Radiofrequency ablation for the palliative treatment of bone metastases: outcomes from the multicenter OsteoCool tumor ablation post-market study (OPUS one study) in 100 patients. J Vasc Interv Radiol 2020; 31 (11) 1745-1752
  • 44 Sahgal A, Whyne CM, Ma L, Larson DA, Fehlings MG. Vertebral compression fracture after stereotactic body radiotherapy for spinal metastases. Lancet Oncol 2013; 14 (08) e310-e320
  • 45 Fisher CG, DiPaola CP, Ryken TC. et al. A novel classification system for spinal instability in neoplastic disease: an evidence-based approach and expert consensus from the Spine Oncology Study Group. Spine 2010; 35 (22) E1221-E1229
  • 46 Versteeg AL, van der Velden JM, Verkooijen HM. et al. The effect of introducing the Spinal Instability Neoplastic Score in routine clinical practice for patients with spinal metastases. Oncologist 2016; 21 (01) 95-101
  • 47 Aiba H, Kimura T, Yamagami T. et al. Prediction of skeletal-related events in patients with non–small cell lung cancer. Support Care Cancer 2016; 24 (08) 3361-3367
  • 48 Pennington Z, Ahmed AK, Westbroek EM. et al. SINS Score and Stability: evaluating the need for stabilization within the uncertain category. World Neurosurg 2019; 128: e1034-e1047
  • 49 Yevich S, Odisio BC, Sheth R, Tselikas L, de Baère T, Deschamps F. Integrated CT-fluoroscopy equipment: improving the interventional radiology approach and patient experience for treatment of musculoskeletal malignancies. Semin Intervent Radiol 2018; 35 (04) 229-237
  • 50 Patel IJ, Rahim S, Davidson JC. et al. Society of Interventional Radiology consensus guidelines for the periprocedural management of thrombotic and bleeding risk in patients undergoing percutaneous image-guided interventions–Part II: Recommendations: Endorsed by the Canadian Association for Interventional Radiology and the Cardiovascular and Interventional Radiological Society of Europe. J Vasc Interv Radiol 2019; 30 (08) 1168-1184.e1
  • 51 Buy X, Tok CH, Szwarc D, Bierry G, Gangi A. Thermal protection during percutaneous thermal ablation procedures: interest of carbon dioxide dissection and temperature monitoring. Cardiovasc Intervent Radiol 2009; 32 (03) 529-534
  • 52 Tsoumakidou G, Garnon J, Ramamurthy N, Buy X, Gangi A. Interest of electrostimulation of peripheral motor nerves during percutaneous thermal ablation. Cardiovasc Intervent Radiol 2013; 36 (06) 1624-1628
  • 53 Kurup AN, Morris JM, Boon AJ. et al. Motor evoked potential monitoring during cryoablation of musculoskeletal tumors. J Vasc Interv Radiol 2014; 25 (11) 1657-1664
  • 54 Kurup AN, Callstrom MR. Expanding role of percutaneous ablative and consolidative treatments for musculoskeletal tumours. Clin Radiol 2017; 72 (08) 645-656
  • 55 Lecigne R, Garnon J, Cazzato RL. et al. Transforaminal insertion of a thermocouple on the posterior vertebral wall combined with hydrodissection during lumbar spinal radiofrequency ablation. AJNR Am J Neuroradiol 2019; 40 (10) 1786-1790
  • 56 Garnon J, Cazzato RL, Caudrelier J. et al. Adjunctive thermoprotection during percutaneous thermal ablation procedures: review of current techniques. Cardiovasc Intervent Radiol 2019; 42 (03) 344-357
  • 57 Filippiadis DK, Tutton S, Mazioti A, Kelekis A. Percutaneous image-guided ablation of bone and soft tissue tumours: a review of available techniques and protective measures. Insights Imaging 2014; 5 (03) 339-346
  • 58 Laredo JD, Chiras J, Kemel S, Taihi L, Hamze B. Vertebroplasty and interventional radiology procedures for bone metastases. Joint Bone Spine 2018; 85 (02) 191-199
  • 59 Yevich S, Tselikas L, Gravel G, de Baère T, Deschamps F. Percutaneous cement injection for the palliative treatment of osseous metastases: a technical review. Semin Intervent Radiol 2018; 35 (04) 268-280
  • 60 Packard AT, Broski SM, Callstrom MR. et al. Utility of PET/CT after cryoablation for early identification of local tumor progression in osseous metastatic disease. AJR Am J Roentgenol 2017; 208 (06) 1342-1351
  • 61 Gravel G, Tselikas L, Moulin B. et al. Early detection with MRI of incomplete treatment of spine metastases after percutaneous cryoablation. Eur Radiol 2019; 29 (10) 5655-5663