Semin intervent Radiol 2018; 35(04): 299-308
DOI: 10.1055/s-0038-1673422
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Thermal Ablation of Bone Metastases

Michael R. Moynagh
1   Department of Radiology, Mayo Clinic, Rochester, Minnesota
,
A. Nicholas Kurup
1   Department of Radiology, Mayo Clinic, Rochester, Minnesota
,
Matthew R. Callstrom
1   Department of Radiology, Mayo Clinic, Rochester, Minnesota
› Author Affiliations
Further Information

Publication History

Publication Date:
05 November 2018 (online)

Abstract

Image-guided, minimally invasive, percutaneous thermal ablation of bone metastases has unique advantages compared with surgery or radiation therapy. Thermal ablation of osseous metastases may result in significant pain palliation, prevention of skeletal-related events, and durable local tumor control. This article will describe current thermal ablation techniques utilized to treat bone metastases, summarize contemporary evidence supporting such thermal ablation treatments, and outline an approach to percutaneous ablative treatment.

 
  • References

  • 1 Chow E, Zeng L, Salvo N, Dennis K, Tsao M, Lutz S. Update on the systematic review of palliative radiotherapy trials for bone metastases. Clin Oncol (R Coll Radiol) 2012; 24 (02) 112-124
  • 2 Janjan N. Bone metastases: approaches to management. Semin Oncol 2001; 28 (04) (Suppl. 11) 28-34
  • 3 So A, Chin J, Fleshner N, Saad F. Management of skeletal-related events in patients with advanced prostate cancer and bone metastases: incorporating new agents into clinical practice. Can Urol Assoc J 2012; 6 (06) 465-470
  • 4 Saad F, Lipton A, Cook R, Chen YM, Smith M, Coleman R. Pathologic fractures correlate with reduced survival in patients with malignant bone disease. Cancer 2007; 110 (08) 1860-1867
  • 5 Kurup AN, Callstrom MR. Ablation of musculoskeletal metastases: pain palliation, fracture risk reduction, and oligometastatic disease. Tech Vasc Interv Radiol 2013; 16 (04) 253-261
  • 6 Deschamps F, Farouil G, de Baere T. Percutaneous ablation of bone tumors. Diagn Interv Imaging 2014; 95 (7-8): 659-663
  • 7 Chow E, Harris K, Fan G, Tsao M, Sze WM. Palliative radiotherapy trials for bone metastases: a systematic review. J Clin Oncol 2007; 25 (11) 1423-1436
  • 8 Lutz S, Berk L, Chang E. , et al; American Society for Radiation Oncology (ASTRO). Palliative radiotherapy for bone metastases: an ASTRO evidence-based guideline. Int J Radiat Oncol Biol Phys 2011; 79 (04) 965-976
  • 9 Laufer I, Rubin DG, Lis E. , et al. The NOMS framework: approach to the treatment of spinal metastatic tumors. Oncologist 2013; 18 (06) 744-751
  • 10 Piccioli A, Spinelli MS, Maccauro G. Impending fracture: a difficult diagnosis. Injury 2014; 45 (Suppl. 06) S138-S141
  • 11 Ahmed M, Brace CL, Lee Jr FT, Goldberg SN. Principles of and advances in percutaneous ablation. Radiology 2011; 258 (02) 351-369
  • 12 Chosy SG, Nakada SY, Lee Jr FT, Warner TF. Monitoring renal cryosurgery: predictors of tissue necrosis in swine. J Urol 1998; 159 (04) 1370-1374
  • 13 Lee Jr FT, Chosy SG, Littrup PJ, Warner TF, Kuhlman JE, Mahvi DM. CT-monitored percutaneous cryoablation in a pig liver model: pilot study. Radiology 1999; 211 (03) 687-692
  • 14 Littrup PJ, Jallad B, Vorugu V. , et al. Lethal isotherms of cryoablation in a phantom study: effects of heat load, probe size, and number. J Vasc Interv Radiol 2009; 20 (10) 1343-1351
  • 15 Sandison GA, Loye MP, Rewcastle JC. , et al. X-ray CT monitoring of iceball growth and thermal distribution during cryosurgery. Phys Med Biol 1998; 43 (11) 3309-3324
  • 16 Dupuy DE, Safran H, Mayo-Smith WW, Goldberg SN. Radiofrequency ablation of painful osseous metastatic disease. Radiology 1998; 209: 389
  • 17 Brace CL. Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences?. Curr Probl Diagn Radiol 2009; 38 (03) 135-143
  • 18 Weisbrod AJ, Atwell TD, Callstrom MR, Farrell MA, Mandrekar JN, Charboneau JW. Percutaneous radiofrequency ablation with a multiple-electrode switching-generator system. J Vasc Interv Radiol 2007; 18 (12) 1528-1532
  • 19 Anchala PR, Irving WD, Hillen TJ. , et al. Treatment of metastatic spinal lesions with a navigational bipolar radiofrequency ablation device: a multicenter retrospective study. Pain Physician 2014; 17 (04) 317-327
  • 20 Hillen TJ, Anchala P, Friedman MV, Jennings JW. Treatment of metastatic posterior vertebral body osseous tumors by using a targeted bipolar radiofrequency ablation device: technical note. Radiology 2014; 273 (01) 261-267
  • 21 Gazis AN, Beuing O, Franke J, Jöllenbeck B, Skalej M. Bipolar radiofrequency ablation of spinal tumors: predictability, safety and outcome. Spine J 2014; 14 (04) 604-608
  • 22 Buy X, Basile A, Bierry G, Cupelli J, Gangi A. Saline-infused bipolar radiofrequency ablation of high-risk spinal and paraspinal neoplasms. AJR Am J Roentgenol 2006; 186 (5, Suppl): S322-S326
  • 23 Brace CL. Microwave ablation technology: what every user should know. Curr Probl Diagn Radiol 2009; 38 (02) 61-67
  • 24 Aubry S, Dubut J, Nueffer JP, Chaigneau L, Vidal C, Kastler B. Prospective 1-year follow-up pilot study of CT-guided microwave ablation in the treatment of bone and soft-tissue malignant tumours. Eur Radiol 2017; 27 (04) 1477-1485
  • 25 Gangi A, Buy X. Percutaneous bone tumor management. Semin Intervent Radiol 2010; 27 (02) 124-136
  • 26 Ahrar K, Stafford RJ. Magnetic resonance imaging-guided laser ablation of bone tumors. Tech Vasc Interv Radiol 2011; 14 (03) 177-182
  • 27 Gangi A, Alizadeh H, Wong L, Buy X, Dietemann JL, Roy C. Osteoid osteoma: percutaneous laser ablation and follow-up in 114 patients. Radiology 2007; 242 (01) 293-301
  • 28 Eckmann MS, Martinez MA, Lindauer S, Khan A, Ramamurthy S. Radiofrequency ablation near the bone-muscle interface alters soft tissue lesion dimensions. Reg Anesth Pain Med 2015; 40 (03) 270-275
  • 29 Kurup AN, Morris JM, Schmit GD. , et al. Balloon-assisted osteoplasty of periacetabular tumors following percutaneous cryoablation. J Vasc Interv Radiol 2015; 26 (04) 588-594
  • 30 Kurup AN, Callstrom MR. Ablation of skeletal metastases: current status. J Vasc Interv Radiol 2010; 21 (8, Suppl): S242-S250
  • 31 Callstrom MR, Kurup AN. Percutaneous ablation for bone and soft tissue metastases--why cryoablation?. Skeletal Radiol 2009; 38 (09) 835-839
  • 32 Zugaro L, DI Staso M, Gravina GL. , et al. Treatment of osteolytic solitary painful osseous metastases with radiofrequency ablation or cryoablation: a retrospective study by propensity analysis. Oncol Lett 2016; 11 (03) 1948-1954
  • 33 Thacker PG, Callstrom MR, Curry TB. , et al. Palliation of painful metastatic disease involving bone with imaging-guided treatment: comparison of patients' immediate response to radiofrequency ablation and cryoablation. AJR Am J Roentgenol 2011; 197 (02) 510-515
  • 34 Goetz MP, Callstrom MR, Charboneau JW. , et al. Percutaneous image-guided radiofrequency ablation of painful metastases involving bone: a multicenter study. J Clin Oncol 2004; 22 (02) 300-306
  • 35 Callstrom MR, Dupuy DE, Solomon SB. , et al. Percutaneous image-guided cryoablation of painful metastases involving bone: multicenter trial. Cancer 2013; 119 (05) 1033-1041
  • 36 Dupuy DE, Liu D, Hartfeil D. , et al. Percutaneous radiofrequency ablation of painful osseous metastases: a multicenter American College of Radiology Imaging Network trial. Cancer 2010; 116 (04) 989-997
  • 37 Bagla S, Sayed D, Smirniotopoulos J. , et al. Multicenter prospective clinical series evaluating radiofrequency ablation in the treatment of painful spine metastases. Cardiovasc Intervent Radiol 2016; 39 (09) 1289-1297
  • 38 Callstrom MR, Charboneau JW, Goetz MP. , et al. Painful metastases involving bone: feasibility of percutaneous CT- and US-guided radio-frequency ablation. Radiology 2002; 224 (01) 87-97
  • 39 Tanigawa N, Arai Y, Yamakado K. , et al. Phase I/II study of radiofrequency ablation for painful bone metastases: Japan Interventional Radiology in Oncology Study Group 0208. Cardiovasc Intervent Radiol 2018; 41 (07) 1043-1048
  • 40 Prologo JD, Passalacqua M, Patel I, Bohnert N, Corn DJ. Image-guided cryoablation for the treatment of painful musculoskeletal metastatic disease: a single-center experience. Skeletal Radiol 2014; 43 (11) 1551-1559
  • 41 Tomasian A, Wallace A, Northrup B, Hillen TJ, Jennings JW. Spine cryoablation: pain palliation and local tumor control for vertebral metastases. AJNR Am J Neuroradiol 2016; 37 (01) 189-195
  • 42 Wallace AN, Greenwood TJ, Jennings JW. Radiofrequency ablation and vertebral augmentation for palliation of painful spinal metastases. J Neurooncol 2015; 124 (01) 111-118
  • 43 Di Staso M, Zugaro L, Gravina GL. , et al. A feasibility study of percutaneous radiofrequency ablation followed by radiotherapy in the management of painful osteolytic bone metastases. Eur Radiol 2011; 21 (09) 2004-2010
  • 44 Pusceddu C, Sotgia B, Fele RM, Melis L. Treatment of bone metastases with microwave thermal ablation. J Vasc Interv Radiol 2013; 24 (02) 229-233
  • 45 Kastler A, Alnassan H, Pereira PL. , et al. Analgesic effects of microwave ablation of bone and soft tissue tumors under local anesthesia. Pain Med 2013; 14 (12) 1873-1881
  • 46 Kastler A, Alnassan H, Aubry S, Kastler B. Microwave thermal ablation of spinal metastatic bone tumors. J Vasc Interv Radiol 2014; 25 (09) 1470-1475
  • 47 Kastler A, Krainik A, Sakhri L, Mousseau M, Kastler B. Feasibility of real-time intraprocedural temperature control during bone metastasis thermal microwave ablation: a bicentric retrospective study. J Vasc Interv Radiol 2017; 28 (03) 366-371
  • 48 Pusceddu C, Sotgia B, Fele RM, Ballicu N, Melis L. Combined microwave ablation and cementoplasty in patients with painful bone metastases at high risk of fracture. Cardiovasc Intervent Radiol 2016; 39 (01) 74-80
  • 49 Williams BJ, Karas PJ, Rao G, Rhines LD, Tatsui CE. Laser interstitial thermal therapy for palliative ablation of a chordoma metastasis to the spine: case report. J Neurosurg Spine 2017; 26 (06) 722-724
  • 50 Macdermed DM, Weichselbaum RR, Salama JK. A rationale for the targeted treatment of oligometastases with radiotherapy. J Surg Oncol 2008; 98 (03) 202-206
  • 51 Lo SS, Teh BS, Mayr NA. , et al. Stereotactic body radiation therapy for oligometastases. Discov Med 2010; 10 (52) 247-254
  • 52 Salama JK, Hasselle MD, Chmura SJ. , et al. Stereotactic body radiotherapy for multisite extracranial oligometastases: final report of a dose escalation trial in patients with 1 to 5 sites of metastatic disease. Cancer 2012; 118 (11) 2962-2970
  • 53 Ma Y, Wallace AN, Waqar SN. , et al. Percutaneous image-guided ablation in the treatment of osseous metastases from non-small cell lung cancer. Cardiovasc Intervent Radiol 2018; 41 (05) 726-733
  • 54 Gardner CS, Ensor JE, Ahrar K. , et al. Cryoablation of bone metastases from renal cell carcinoma for local tumor control. J Bone Joint Surg Am 2017; 99 (22) 1916-1926
  • 55 Erie AJ, Morris JM, Welch BT. , et al. Retrospective review of percutaneous image-guided ablation of oligometastatic prostate cancer: a single-institution experience. J Vasc Interv Radiol 2017; 28 (07) 987-992
  • 56 Wallace AN, Tomasian A, Vaswani D, Vyhmeister R, Chang RO, Jennings JW. Radiographic local control of spinal metastases with percutaneous radiofrequency ablation and vertebral augmentation. AJNR Am J Neuroradiol 2016; 37 (04) 759-765
  • 57 Deschamps F, Farouil G, Ternes N. , et al. Thermal ablation techniques: a curative treatment of bone metastases in selected patients?. Eur Radiol 2014; 24 (08) 1971-1980
  • 58 Welch BT, Callstrom MR, Morris JM. , et al. Feasibility and oncologic control after percutaneous image guided ablation of metastatic renal cell carcinoma. J Urol 2014; 192 (02) 357-363
  • 59 McMenomy BP, Kurup AN, Johnson GB. , et al. Percutaneous cryoablation of musculoskeletal oligometastatic disease for complete remission. J Vasc Interv Radiol 2013; 24 (02) 207-213
  • 60 Bang HJ, Littrup PJ, Currier BP. , et al. Percutaneous cryoablation of metastatic lesions from non-small-cell lung carcinoma: initial survival, local control, and cost observations. J Vasc Interv Radiol 2012; 23 (06) 761-769
  • 61 Bang HJ, Littrup PJ, Goodrich DJ. , et al. Percutaneous cryoablation of metastatic renal cell carcinoma for local tumor control: feasibility, outcomes, and estimated cost-effectiveness for palliation. J Vasc Interv Radiol 2012; 23 (06) 770-777
  • 62 Vaswani D, Wallace AN, Eiswirth PS. , et al. Radiographic local tumor control and pain palliation of sarcoma metastases within the musculoskeletal system with percutaneous thermal ablation. Cardiovasc Intervent Radiol 2018; 41 (08) 1223-1232
  • 63 Gravel G, Leboulleux S, Tselikas L. , et al. Prevention of serious skeletal-related events by interventional radiology techniques in patients with malignant paraganglioma and pheochromocytoma. Endocrine 2018; 59 (03) 547-554
  • 64 Deschamps F, Farouil G, Hakime A, Teriitehau C, Barah A, de Baere T. Percutaneous stabilization of impending pathological fracture of the proximal femur. Cardiovasc Intervent Radiol 2012; 35 (06) 1428-1432
  • 65 Hartung MP, Tutton SM, Hohenwalter EJ, King DM, Neilson JC. Safety and efficacy of minimally invasive acetabular stabilization for periacetabular metastatic disease with thermal ablation and augmented screw fixation. J Vasc Interv Radiol 2016; 27 (05) 682-688.e1
  • 66 Kelekis A, Filippiadis DK, Kelekis NL, Martin JB. Percutaneous augmented osteoplasty of the humeral bone using a combination of microneedles mesh and cement. J Vasc Interv Radiol 2015; 26 (04) 595-597
  • 67 Kurup AN, Morris JM, Schmit GD. , et al. Neuroanatomic considerations in percutaneous tumor ablation. Radiographics 2013; 33 (04) 1195-1215
  • 68 Packard AT, Broski SM, Callstrom MR. , et al. Utility of PET/CT after cryoablation for early identification of local tumor progression in osseous metastatic disease. AJR Am J Roentgenol 2017; 208 (06) 1342-1351
  • 69 Kurup AN, Morris JM, Boon AJ. , et al. Motor evoked potential monitoring during cryoablation of musculoskeletal tumors. J Vasc Interv Radiol 2014; 25 (11) 1657-1664
  • 70 Tsoumakidou G, Garnon J, Ramamurthy N, Buy X, Gangi A. Interest of electrostimulation of peripheral motor nerves during percutaneous thermal ablation. Cardiovasc Intervent Radiol 2013; 36 (06) 1624-1628
  • 71 Wallace AN, Chang RO, Tomasian A, Jennings JW. Drill-assisted, fluoroscopy-guided vertebral body access for radiofrequency ablation: technical case series. Interv Neuroradiol 2015; 21 (05) 631-634
  • 72 Kurup AN, Schmit GD, Morris JM. , et al. Avoiding complications in bone and soft tissue ablation. Cardiovasc Intervent Radiol 2017; 40 (02) 166-176
  • 73 Tsoumakidou G, Buy X, Garnon J, Enescu J, Gangi A. Percutaneous thermal ablation: how to protect the surrounding organs. Tech Vasc Interv Radiol 2011; 14 (03) 170-176
  • 74 Enneking WF, Dunham W, Gebhardt MC, Malawar M, Pritchard DJ. A system for the functional evaluation of reconstructive procedures after surgical treatment of tumors of the musculoskeletal system. Clin Orthop Relat Res 1993; (286) 241-246
  • 75 Roland M, Fairbank J. The Roland-Morris Disability Questionnaire and the Oswestry Disability Questionnaire. Spine 2000; 25 (24) 3115-3124
  • 76 Wallace AN, Greenwood TJ, Jennings JW. Use of imaging in the management of metastatic spine disease with percutaneous ablation and vertebral augmentation. AJR Am J Roentgenol 2015; 205 (02) 434-441