Kinder- und Jugendmedizin 2018; 18(02): 108-116
DOI: 10.1055/s-0038-1646138
Knochengesundheit/Skeletterkrankungen
Schattauer GmbH

Neue therapeutische Ansätze bei seltenen Skeletterkrankungen im Kindesalter

New therapeutic approaches in rare skeletal diseases in childhood
H. Hoyer-Kuhn
1   Abteilung für Pädiatrische Endokrinologie, Stoffwechselstörungen und Osteologie, Klinik und Poliklinik für Kinder- und Jugendmedizin, Uniklinik Köln
,
M. Rehberg
1   Abteilung für Pädiatrische Endokrinologie, Stoffwechselstörungen und Osteologie, Klinik und Poliklinik für Kinder- und Jugendmedizin, Uniklinik Köln
,
C. Stark
2   Zentrum für Prävention und Rehabilitation, Unireha, Uniklinik Köln
,
O. Semler
1   Abteilung für Pädiatrische Endokrinologie, Stoffwechselstörungen und Osteologie, Klinik und Poliklinik für Kinder- und Jugendmedizin, Uniklinik Köln
3   Zentrum für seltene Skeletterkrankungen im Kindes- und Jugendalter, Uniklinik Köln
› Author Affiliations
Further Information

Publication History

Eingereicht am: 21 September 2017

angenommen am: 05 October 2017

Publication Date:
27 April 2018 (online)

Zusammenfassung

Die Diagnose und Therapie seltener Erkrankungen im Kindes- und Jugendalter nimmt zunehmend einen großen Stellenwert in der pädiatrischen Praxis ein. Die hohe Anzahl seltener Erkrankungen mit jeweils nur einzelnen Betroffenen stellt eine besondere Herausforderung an die alltäglichen Versorgungsstrukturen dar. Durch die detaillierte Entschlüsselung der jeweiligen genetischen und pathophysiologischen Grundlage vieler der monogenetisch bedingten seltenen Erkrankungen ist es jedoch in den letzten Jahren gelungen, gezielte Therapieansätze zu entwickeln, welche derzeit in der klinischen Erprobung sind. Aktuell werden Studien im Kindes- und Jugendalter bei Patienten mit Achondroplasie, Osteogenesis imperfecta, Hypophosphatasie, hypophosphatämischer Rachitis und Fibrodysplasia ossificans progressiva durchgeführt. Die zugrunde liegenden genetischen Veränderungen, deren pathophysiologische Auswirkungen bis hin zum translationalen Therapieansatz werden in dieser Übersichtsarbeit schematisch dargestellt.

Summary

Rare diseases are an upcoming issue for pediatricians caring for children in different facilities – from primary care to specialized university hospital units. A high number of rare diseases affecting each only a few patients pose a challenge to the physicians and structures of the health care system. The identification of the underlying genetic cause and pathophysiologic correlate led to new translational therapeutic approaches in children and adolescents with rare skeletal diseases. Clinical trials are performed currently in children with achondroplasia, osteogenesis imperfecta, hypophosphatasia, hypophosphatemic rickets and fibrodysplasia ossificans progressiva. Genetic causes, pathophysiologic changes and translational therapeutic approaches are presented within this review for the 5 rare skeletal diseases mentioned above.

 
  • Literatur

  • 1 Van Dijk FS, Sillence DO. Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A 2014; 164A: 1470-1481.
  • 2 Becker J. et al. Exome Sequencing Identifies Truncating Mutations in Human SERPINF1 in Autosomal-Recessive Osteogenesis Imperfecta. Am J Hum Genet 2011; 88: 362-371.
  • 3 Semler O. et al. A Mutation in the 5’-UTR of IFITM5 Creates an In-Frame Start Codon and Causes Autosomal-Dominant Osteogenesis Imperfecta Type V with Hyperplastic Callus. Am J Hum Genet 2012; 91: 349-357.
  • 4 Rauch F. et al. Relationship between genotype and skeletal phenotype in children and adolescents with osteogenesis imperfecta. J Bone Miner Res 2010; 25: 1367-1374.
  • 5 Bonafe L. et al. Nosology and classification of genetic skeletal disorders: 2015 revision. Am J Med Genet A 2015; 167A: 2869-2892.
  • 6 Schonau E. et al. Influence of muscle strength on bone strength during childhood and adolescence. Horm Res 1996; 45: Suppl 1 63-66.
  • 7 Kaplan FS. et al. Early clinical observations on the use of imatinib mesylate in FOP: A report of seven cases. Bone. 2017 pii: S8756–3282(17)30245–4. 10.1016/j.bone.2017.07.019.
  • 8 Giangregorio LM. et al. Too Fit To Fracture: outcomes of a Delphi consensus process on physical activity and exercise recommendations for adults with osteoporosis with or without vertebral fractures. Osteoporos Int 2015; 26: 891-910.
  • 9 Waller DK. et al. The population-based prevalence of achondroplasia and thanatophoric dysplasia in selected regions of the US. Am J Med Genet A 2008; 146A: 2385-2389.
  • 10 Horton WA. et al. Standard growth curves for achondroplasia. J Pediatr 1978; 93: 435-438.
  • 11 Rousseau F. et al. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 1994; 371: 252-254.
  • 12 Shelmerdine SC. et al. Achondroplasia: Really rhizomelic?. Am J Med Genet A 2016; 170: 2039-2043.
  • 13 Komla-Ebri D. et al. Tyrosine kinase inhibitor NVP-BGJ398 functionally improves FGFR3-related dwarfism in mouse model. J Clin Invest 2016; 126: 1871-1884.
  • 14 Lorget F. et al. Evaluation of the therapeutic potential of a CNP analog in a Fgfr3 mouse model recapitulating achondroplasia. Am J Hum Genet 2012; 91: 1108-1114.
  • 15 Mornet E. Hypophosphatasia. Orphanet J Rare Dis 2007; 02: 40.
  • 16 Whyte MP. Hypophosphatasia: An overview For 2017. Bone 2017; 102: 15-25.
  • 17 Whyte MP. Hypophosphatasia: Enzyme Replacement Therapy Brings New Opportunities and New Challenges. J Bone Miner Res 2017; 32: 667-675.
  • 18 Whyte MP. et al. Enzyme-replacement therapy in life-threatening hypophosphatasia. N Engl J Med 2012; 366: 904-913.
  • 19 Shore EM. et al. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 2006; 38: 525-527.
  • 20 Billings PC. et al. Dysregulated BMP signaling and enhanced osteogenic differentiation of connective tissue progenitor cells from patients with fibrodysplasia ossificans progressiva (FOP). J Bone Miner Res 2008; 23: 305-313.
  • 21 Kussmaul WG. et al. Pulmonary and cardiac function in advanced fibrodysplasia ossificans progressiva. Clin Orthop Relat Res 1998; 104-109.
  • 22 Kartal-Kaess M. et al. Fibrodysplasia ossificans progressiva (FOP): watch the great toes!. Eur J Pediatr 2010; 169: 1417-1421.
  • 23 Chakkalakal SA. et al. Palovarotene Inhibits Heterotopic Ossification and Maintains Limb Mobility and Growth in Mice With the Human ACVR1(R206H) Fibrodysplasia Ossificans Progressiva (FOP) Mutation. J Bone Miner Res 2016; 31: 1666-1675.
  • 24 Rauch F, Glorieux FH. Osteogenesis imperfecta. Lancet 2004; 363: 1377-1385.
  • 25 Glorieux FH. Experience with bisphosphonates in osteogenesis imperfecta. Pediatrics 2007; 119 Suppl 2 163-165.
  • 26 Land C. et al. Effect of intravenous pamidronate therapy on functional abilities and level of ambulation in children with osteogenesis imperfecta. J Pediatr 2006; 148: 456-460.
  • 27 Hoyer-Kuhn H. et al. Two years experience with denosumab for children with Osteogenesis imperfecta type VI. Orphanet J Rare Dis 2014; 09: 145.
  • 28 Semler O. et al. First use of the RANKL antibody denosumab in Osteogenesis Imperfecta Type VI. J Musculoskelet Neuronal Interact 2012; 12: 183-188.
  • 29 Hoyer-Kuhn H. et al. Effects of Denosumab in Children with Osteogenesis imperfecta – a phase 2 trial. J Clin Endocrinol Metab. 2015 under review.
  • 30 Jones B. Bone diseases: Sclerostin neutralization – a viable pathway for OPPG?. Nat Rev Rheumatol 2014; 10: 4.
  • 31 Roschger A. et al. Effect of sclerostin antibody treatment in a mouse model of severe osteogenesis imperfecta. Bone 2014; 66: 182-188.