Osteologie 2013; 22(03): 180-187
DOI: 10.1055/s-0038-1630122
Osteologische Biomaterialien
Schattauer GmbH

Regeneration von Knochendefekten mit computergesteuerter Herstellung von Gerüstträgern

Computer aided design of scaffolds for bone tissue engineering
J. Henke
1   Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
,
J. T. Schantz
2   Klinik und Poliklinik für Plastische Chirurgie und Handchirurgie, Klinikum Rechts der Isar, Technische Universität München, Deutschland
,
D. W. Hutmacher
1   Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
2   Klinik und Poliklinik für Plastische Chirurgie und Handchirurgie, Klinikum Rechts der Isar, Technische Universität München, Deutschland
3   Institute for Advanced Studies, Technical University Munich, Germany
› Author Affiliations
Further Information

Publication History

eingereicht: 07 June 2013

angenommen: 18 June 2013

Publication Date:
30 January 2018 (online)

Zusammenfassung

Die Behandlung ausgedehnter Knochen-defekte nach Traumata oder durch Tumoren stellt nach wie vor eine signifikante Heraus-forderung im klinischen Alltag dar. Aufgrund der bestehenden Limitationen aktueller Therapiestandards haben Knochen-Tissue-Engineering (TE)-Verfahren zunehmend an Bedeutung gewonnen. Die Entwicklung von Additive-Manufacturing (AM)-Verfahren hat dabei eine grundlegende Innovation ausgelöst: Durch AM lassen sich dreidimensionale Gerüstträger in einem computergestützten Schichtfür-Schicht-Verfahren aus digitalen 3D-Vorlagen erstellen. Wurden mittels AM zunächst nur Modelle zur haptischen Darstellung knöcherner Pathologika und zur Planung von Operationen hergestellt, so ist es mit der Entwicklung nun möglich, detaillierte Scaffoldstrukturen zur Tissue-Engineering-Anwendung im Knochen zu fabrizieren. Die umfassende Kontrolle der internen Scaffoldstruktur und der äußeren Scaffoldmaße erlaubt eine Custom-made-Anwendung mit auf den individuellen Knochendefekt und die entsprechenden (mechanischen etc.) Anforderungen abgestimmten Konstrukten. Ein zukünftiges Feld ist das automatisierte ultrastrukturelle Design von TE-Konstrukten aus Scaffold-Biomaterialien in Kombination mit lebenden Zellen und biologisch aktiven Wachstumsfaktoren zur Nachbildung natürlicher (knöcherner) Organstrukturen.

Summary

Large bone defects resulting from trauma or tumour surgery are still considered a major challenge in clinical practice. Despite high clinical demand, current treatment options have a number of shortcomings. Bone tissue engineering (BTE)-strategies have therefore been extensively investigated in recent years. The invention of additive manufacturing (AM)-techniques two decades ago has had a huge impact on the BTE field ever since then: Via AM a solid three dimensional structure can be formed from a digital 3D model using a layer-by-layer fabrication process. In the beginning, AM was mainly used to build 3D models of bone pathologies (e. g. fractures, bone tumours) to enable haptic assessment before and during surgery for planning and executing the surgical procedure. However, as new techniques and materials have been developed, AM can nowadays be used to manufacture ultrastructured three dimensional scaffolds for BTE applications as well. Providing control over the internal scaffold architecture on micrometer scale as well as over the external macroscopic scaffold shape, AM enables the fabrication of patientspecific and/or custom-made scaffolds individually tailored to exactly match the size and requirements (e. g. mechanical properties) of a bone defect. In the future, new technologies that enable the direct fabrication of scaffolds with a parallel spatially controlled deposition of cells and growth factors will further underpin the clinical application of bone tissue engineering.

 
  • Literatur

  • 1 Marsell R, Einhorn TA. The biology of fracture healing. Injury 2011; 42 (6) 551-555.
  • 2 Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med 2011; 9: 66.
  • 3 Einhorn TA. Enhancement of fracture healing. Instr Course Lect 1996; 45: 401-416.
  • 4 Calori GM, Albisetti W, Agus A. et al. Risk factors contributing to fracture non-unions. Injury 2007; 38 (Suppl 2) S11-S18.
  • 5 Romano CL, Romano D, Logoluso N. Low-intensity pulsed ultrasound for the treatment of bone delayed union or nonunion: a review. Ultrasound Med Biol 2009; 35 (4) 529-536.
  • 6 Zelle BA, Gollwitzer H, Zlowodzki M, Buhren V. Extracorporeal shock wave therapy: current evidence. J Orthop Trauma 2010; 24 (Suppl 1) S66-S70.
  • 7 Griffin XL, Smith N, Parsons N, Costa ML. Ultrasound and shockwave therapy for acute fractures in adults. Cochrane Database Syst Rev. 2012 2. cd008579.
  • 8 Myeroff C, Archdeacon M. Autogenous bone graft: donor sites and techniques. J Bone Joint Surg Am 2011; 93 (23) 2227-2236.
  • 9 Van der Stok J, Van Lieshout EM, El-Massoudi Y. et al. Bone substitutes in the Netherlands – a systematic literature review. Acta Biomater 2011; 7 (2) 739-750.
  • 10 Schieker M, Heiss C, Mutschler W. [Bone substitutes]. Unfallchirurg. 2008; 111 (8) 613-619 quiz 620.
  • 11 Nandi SK, Roy S, Mukherjee P. et al. Orthopaedic applications of bone graft & graft substitutes: a review. Indian J Med Res 2010; 132: 15-30.
  • 12 Probst FA, Hutmacher DW, Muller DF. et al. Machens HG, Schantz JT. [Calvarial reconstruction by customized bioactive implant]. Handchir Mikrochir Plast Chir 2010; 42 (6) 369-373.
  • 13 ASTM Standard F2792-10: Standard Terminology for Additive Manufacturing Technologies. ASTM International. 2010
  • 14 Ballyns JJ, Bonassar LJ. Image-guided tissue engineering. J Cell Mol Med 2009; 13 (8A) 1428-1436.
  • 15 Peltola SM, Melchels FP, Grijpma DW, Kellomaki M. A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 2008; 40 (4) 268-280.
  • 16 Yeong W-Y, Chua C-K, Leong K-F, Chandrasekaran M. Rapid prototyping in tissue engineering: challenges and potential. Trends in biotechnology 2004; 22 (12) 643-652.
  • 17 Melchels FPW, Domingos MAN, Klein TJ. et al. Additive manufacturing of tissues and organs. Progress in Polymer Science 2012; 37 (8) 1079-1104.
  • 18 Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater 2005; 4 (7) 518-524.
  • 19 Wendel B, Rietzel D, Kühnlein F. et al. Additive Processing of Polymers. Macromolecular Materials and Engineering 2008; 293 (10) 799-809.
  • 20 Malone E, Lipson H. Fab@Home: The personal desktop fabricator kit. Rapid Prototyping J 2007; 13: 245-255.
  • 21 Jones R, Haufe P, Sells E. et al. RepRap – the replicating rapid prototyper. Robotica 2011; 29: 177-191.
  • 22 Webb PA. A review of rapid prototyping (RP) techniques in the medical and biomedical sector. J Med Eng Technol 2000; 24 (4) 149-153.
  • 23 McGurk M, Amis AA, Potamianos P, Goodger NM. Rapid prototyping techniques for anatomical modelling in medicine. Ann R Coll Surg Engl 1997; 79 (3) 169-174.
  • 24 Potamianos P, Amis AA, Forester AJ. et al. Rapid prototyping for orthopaedic surgery. Proc Inst Mech Eng H 1998; 212 (5) 383-393.
  • 25 Goiato MC, Santos MR, Pesqueira AA. et al. Prototyping for surgical and prosthetic treatment. J Craniofac Surg 2011; 22 (3) 914-917.
  • 26 Debarre E, Hivart P, Baranski D, Déprez P. Speedy skeletal prototype production to help diagnosis in orthopaedic and trauma surgery. Methodology and examples of clinical applications. Orthopaedics & Traumatology: Surgery & Research 2012; 98 (5) 597-602.
  • 27 Esses SJ, Berman P, Bloom AI, Sosna J. Clinical applications of physical 3D models derived from MDCT data and created by rapid prototyping. AJR Am J Roentgenol 2011; 196 (6) W683-W688.
  • 28 Hutmacher DW, Sittinger M, Risbud MV. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends in biotechnology 2004; 22 (7) 354-362.
  • 29 Hutmacher DW, Cool S. Concepts of scaffold-based tissue engineering--the rationale to use solid free-form fabrication techniques. J Cell Mol Med 2007; 11 (4) 654-669.
  • 30 Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials 2010; 31 (24) 6121-6130.
  • 31 Maruo S, Ikuta K. Submicron stereolithography for the production of freely movable mechanisms by using single-photon polymerization. Sensors and Actuators A: Physical 2002; 100 (1) 70-76.
  • 32 Hollinger CA JO. Bone regeneration materials for the mandibular and craniofacial complex. Cells Mater. 1992 (2) 143. 151.
  • 33 Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000; 21 (24) 2529-2543.
  • 34 Hutmacher DW, Schantz JT, Lam CX. et al. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 2007; 1 (4) 245-260.
  • 35 Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci 2004; 4 (8) 743-765.
  • 36 Szpalski C, Wetterau M, Barr J, Warren SM. Bone tissue engineering: current strategies and techniques – part I: Scaffolds. Tissue Eng Part B Rev 2012; 18 (4) 246-257.
  • 37 Webster TJ, Ahn ES. Nanostructured biomaterials for tissue engineering bone. Adv Biochem Eng Biotechnol 2007; 103: 275-308.
  • 38 Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends in biotechnology 2012; 30 (10) 546-554.
  • 39 Reichert JC, Cipitria A, Epari DR. et al. A tissue engineering solution for segmental defect regeneration in load-bearing long bones. Sci Transl Med. 2012 4. (141) 141ra93.
  • 40 Zhou Y, Chen F, Ho ST. et al. Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts. Biomaterials 2007; 28 (5) 814-824.
  • 41 Abbah SA, Lam CX, Hutmacher DW. et al. Biological performance of a polycaprolactone-based scaffold used as fusion cage device in a large animal model of spinal reconstructive surgery. Biomaterials 2009; 30 (28) 5086-5093.
  • 42 Holzapfel BM, Chhaya MP, Melchels FP. et al. Can bone tissue engineering contribute to therapy concepts after resection of musculoskeletal sarcoma?. Sarcoma. 2013: 153640.
  • 43 Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury 2007; 38 (Suppl 4) S3-S6.
  • 44 Giannoudis PV, Einhorn TA, Schmidmaier G, Marsh D. The diamond concept – open questions. Injury 2008; 39 (Suppl 2) S5-S8.
  • 45 Woodruff MA, Hutmacher DW, Berner A. et al. Bone tissue engineering: from bench to bedside. Materials Today 2012; 15 (10) 430-435.
  • 46 Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury 2005; 36 (Suppl 3) S20-S27.
  • 47 Peterlik M. Wnt signaling pathways and bone turnover. Osteologie 2011; 20 (3) 197-202.
  • 48 Derby B. Printing and prototyping of tissues and scaffolds. Science 2012; 338 (6109) 921-926.
  • 49 Wang X, Yan Y, Pan Y. et al. Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng 2006; 12 (1) 83-90.
  • 50 Shengjie Li ZX, Xiaohong W, Yongnian Y. et al. Direct Fabrication of a Hybrid Cell/Hydrogel Construct by a Double-nozzle Assembling Technology. Journal of Bioactive and Compatible Polymers 2009; 24: 249-265.
  • 51 Schuurman W, Khristov V, Pot MW. et al. Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 2011; 3 (2) 021001.
  • 52 Liedert A, Kreja L, Wagner L. et al. [Signal transduction pathways in mechanotransduction in bone cells]. Osteologie 2010; 19 (3) 240-244.