Synlett 2018; 29(12): 1583-1588
DOI: 10.1055/s-0037-1610147
letter
© Georg Thieme Verlag Stuttgart · New York

Reaction between Chalcones, 1,3-Dicarbonyl Compounds, and Elemental Sulfur: A One-Pot Three-Component Synthesis of Substituted Thiophenes

Mehdi Adib*
a   School of Chemistry, College of Science, University of Tehran, PO Box 14155-6455, Tehran, Iran   Email: madib@khayam.ut.ac.ir
,
Saideh Rajai-Daryasarei
a   School of Chemistry, College of Science, University of Tehran, PO Box 14155-6455, Tehran, Iran   Email: madib@khayam.ut.ac.ir
,
Rahim Pashazadeh
a   School of Chemistry, College of Science, University of Tehran, PO Box 14155-6455, Tehran, Iran   Email: madib@khayam.ut.ac.ir
,
Mehdi Jahani
a   School of Chemistry, College of Science, University of Tehran, PO Box 14155-6455, Tehran, Iran   Email: madib@khayam.ut.ac.ir
,
Massoud Amanlou
b   Pharmaceutical Sciences Research Center and Department of Medicinal Chemistry, Tehran University of Medical Sciences, Tehran, Iran
› Author Affiliations
Further Information

Publication History

Received: 22 February 2018

Accepted after revision: 19 April 2018

Publication Date:
05 June 2018 (online)


Abstract

A simple and atom-economic synthesis of highly substituted thiophenes is demonstrated. Heating a solution of a chalcone and a ­linear/cyclic 1,3-dicarbonyl compound with elemental sulfur in CH3CN in the presence of NEt3 at 80 °C afforded the corresponding substituted thiophenes in good to excellent yields.

Supporting Information

 
  • References and Notes

    • 1a Nguyen TB. Adv. Synth. Catal. 2017; 359: 1066
    • 1b Chen FJ. Liao G. Li X. Wu J. Shi BF. Org. Lett. 2014; 16: 5644
    • 1c Zhu X. Yang Y. Xiao G. Song J. Liang Y. Deng G. Chem. Commun. 2017; 53: 11917
    • 1d Che X. Jiang J. Xiao F. Huang H. Deng GJ. Org. Lett. 2017; 19: 4576
    • 1e Nguyen LA. Ngo QA. Retailleau P. Nguyen TB. Green Chem. 2017; 19: 4289

    • 2a Guntreddi T. Vanjari R. Singh KN. Org. Lett. 2015; 17: 976
    • 2b Nguyen TB. Retailleau P. Adv. Synth. Catal. 2017; 359: 3843
    • 2c Li G. Jiang J. Zhang F. Xiao F. Deng GJ. Org. Biomol. Chem. 2017; 15: 10024
  • 3 Meyer V. Ber. Dtsch. Chem. Ges. 1882; 15: 2893
    • 4a Noel R. Gupta N. Pons V. Goudet A. Garcia-Castillo MD. Michau A. Martinez J. Buisson DA. Johannes L. Gillet D. Barbier J. Cintrat JC. J. Med. Chem. 2013; 56: 3404
    • 4b Liu KK. C. Zhu J. Smith GL. Yin M.-J. Bailey S. Chen JH. Hu Q. Huang Q. Li C. Li QJ. Marx MA. Paderes G. Richardson PF. Sach NW. Walls M. Wells PA. Zou A. ACS Med. Chem. Lett. 2011; 2: 809
    • 4c Huang H. Li H. Yang S. Chreifi G. Martásek P. Roman LJ. Meyskens FL. Poulos TL. Silverman RB. J. Med. Chem. 2014; 57: 686
    • 4d Gabriele B. Salerno G. Fazio A. Org. Lett. 2000; 2: 351
    • 4e Wang W. Lv D. Qiu N. Zhang L. Hu C. Hu Y. Bioorg. Med. Chem. 2013; 21: 2886
    • 4f Tian Y. Wei X. Xu H. J. Nat. Prod. 2006; 69: 1241
    • 4g You W. Yan X. Liao Q. Xi C. Org. Lett. 2010; 12: 3930
    • 4h Nandi GC. Samai S. Singh MS. J. Org. Chem. 2011; 76: 8009
    • 4i Wong DT. Robertson DW. Bymaster FP. Krushinski JK. Reid LR. Life Sci. 1988; 43: 2049
    • 4j Widemann BC. Balis FM. Godwin KS. McCully C. Adamson PC. Cancer Chemother. Pharmacol. 1999; 44: 439
    • 4k Gans KR. Galbraith W. Roman RJ. Haber SB. Kerr JS. Schmidt KW. Smith C. Hewes WE. Ackerman NR. J. Pharmacol. Exp. Ther. 1990; 254: 180
    • 5a Wan ZK. Lee J. Xu W. Erbe DV. Joseph-McCarthy D. Follows BC. Zhang YL. Bioorg. Med. Chem. Lett. 2006; 16: 4941
    • 5b Moretto AF. Kirincich SJ. Xu WX. Smith MJ. Wan ZK. Wilson DP. Follows BC. Binnun E. Joseph-McCarthy D. Foreman K. Erbe DV. Zhang YL. Tam SK. Tam SY. Lee J. Bioorg. Med. Chem. 2006; 14: 2162
    • 6a Ong BS. Wu Y. Li Y. Liu P. Pan H. Chem. Eur. J. 2008; 14: 4766
    • 6b Ortiz RP. Casado J. Hernández V. Navarrete JT. L. Letizia JA. Ratner MA. Facchetti A. Marks TJ. Chem. Eur. J. 2009; 15: 5023
    • 6c Romiszewski J. Puterová-Tokarová Z. Mieczkowski J. Gorecka E. New J. Chem. 2014; 38: 2927
    • 6d Kang SJ. Song S. Liu C. Kim DY. Noh YY. Org. Electron. 2014; 15: 1972
    • 6e Ie Y. Umemoto Y. Okabe M. Kusunoki T. Nakayama KI. Pu YJ. Kido J. Tada H. Aso Y. Org. Lett. 2008; 10: 833
    • 6f McCullough RD. Adv. Mater. 1998; 10: 93
    • 6g Perepichka IF. Perepichka DF. Meng H. Wudl F. Adv. Mater. 2005; 17: 2281
    • 6h Pisignano D. Anni M. Gigli G. Cingolani R. Zavelani-Rossi M. Lanzani G. Barbarella G. Favaretto L. Appl. Phys. Lett. 2002; 81: 3534
    • 6i Stylianakis MM. Mikroyannidis JA. Kymakis E. Sol. Energy Mater. Sol. Cell. 2010; 94: 267
    • 7a Paal C. Ber. Dtsch. Chem. Ges. 1884; 17: 2756
    • 7b Knorr L. Ber. Dtsch. Chem. Ges. 1884; 17: 2863
    • 7c Gewald K. Angew. Chem. 1961; 73: 114
    • 7d Hinsberg O. Ber. Dtsch. Chem. Ges. 1910; 43: 901
    • 7e Fiesselmann H. Schipprak P. Chem. Ber. 1954; 87: 835
    • 7f Volhard J. Erdmann H. Chem. Ber. 1885; 18: 454
  • 8 Liu W. Chen C. Liu H. Adv. Synth. Catal. 2015; 357: 4050
  • 9 Ni C. Wang M. Tong X. Org. Lett. 2016; 18: 2240
  • 10 Bharathiraja G. Sathishkannan G. Punniyamurthy T. J. Org. Chem. 2016; 81: 2670
  • 11 Wang Z. Qu Z. Xiao F. Huang H. Deng G.-J. Adv. Synth. Catal. 2018; 360: 796
    • 12a Sato O. Nakayama J. In Comprehensive Heterocyclic Chemistry III . Vol. 3. Katritzky AR. Ramsden CA. Scriven EF. V. Taylor RJ. K. Chap. 11 Elsevier; Oxford: 2008: 844 , and references therein
    • 12b Zhang G. Yi H. Chen H. Bian C. Liu C. Lei A. Org. Lett. 2014; 16: 6156
    • 12c Reddy CR. Valleti RR. Reddy ND. J. Org. Chem. 2013; 78: 6495
    • 12d Anxionnat B. Pardo DG. Ricci G. Rossen K. Cossy J. Org. Lett. 2013; 15: 3876
    • 12e Kong Y. Yu L. Fu L. Cao J. Lai G. Cui Y. Hu Z. Wang G. Synthesis 2013; 45: 1975
    • 12f Gabriele B. Mancuso R. Veltri L. Maltese V. Salerno G. J. Org. Chem. 2012; 77: 9905
    • 12g Gabriele B. Mancuso R. Salerno G. Larock RC. J. Org. Chem. 2012; 77: 7640
    • 12h Hari DP. Hering T. König B. Org. Lett. 2012; 14: 5334
    • 12i Nandi GC. Samai S. Singh MS. J. Org. Chem. 2011; 76: 8009
    • 12j Kuhn M. Falk FC. Paradies J. Org. Lett. 2011; 13: 4100
    • 12k Sun LL. Deng CL. Tang RY. Zhang XG. J. Org. Chem. 2011; 76: 7546
    • 12l You W. Yan X. Liao Q. Xi C. Org. Lett. 2010; 12: 3930
    • 12m Nakamura I. Sato T. Yamamoto Y. Angew. Chem. Int. Ed. 2006; 45: 4473
    • 12n Kaleta Z. Makowski BT. Soos T. Dembinski R. Org. Lett. 2006; 8: 1625
    • 13a Miao CB. Liu R. Sun YF. Sun XQ. Yang HT. Tetrahedron Lett. 2017; 58: 541
    • 13b Wang GW. Lu QQ. Xia JJ. Eur. J. Org. Chem. 2011; 4429
  • 14 Representative Procedure for the Synthesis of 3-Acetyl-4-benzoyl-2-methyl-3-phenyl thiophene (4a) A mixture of 1,3-diphenyl-2-propen-1-one (1a) (0.208 g, 1.0 mmol), 2,4-pentanedione (2a) (0.100 g, 1.0 mmol), and triethylamine (0.025 g 0.25 mmol) in CH3CN (1 mL) was stirred at 80 °C for 12 h. Subsequently, triethylamine (0.071 g, 0.7 mmol) and elemental sulfur (0.038 g, 1.2 mmol) were added to the mixture, which was heated to 80 °C for a further 5 h. After completion of the reaction, as indicated by TLC monitoring, the mixture was cooled to ambient temperature and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography by using n-hexane/EtOAc (8:1 v/v) as the eluent to afford the desired product 4a. 3-Acetyl-5-benzoyl-2-methyl-4-phenylthiophene (4a) White solid. Yield: 0.269 g, 84%. Mp 60–62 °C. IR (KBr) (ν max/cm–1): 1682 and 1622 (C=O), 1520, 1488, 1445, 1363, 1301, 1234, 1171, 1113, 1073, 1028, 963, 904, 869, 786, 721, 696, 656, 621. EI-MS: m/z (%) = 320 (100) [M]+, 305 (33), 277 (8), 243 (7), 227 (30), 215 (7), 201 (19), 171 (19), 121 (11), 105 (78), 77 (67), 43 (21). 1H NMR (500.1 MHz, CDCl3): δ = 1.80 (s, 3 H, CH3), 2.60 (s, 3 H, CH3), 7.09–7.16 (m, 7 H, 7 CH), 7.30 (t, 1 H, J = 7.4 Hz, CH), 7.50 (dd, 2 H, J = 8.2, 1.2 Hz, 2 CH) ppm. 13C NMR (125.8 MHz, CDCl3): δ = 15.36 and 31.21 (2 CH3), 127.95 (2 CH), 128.39 (CH), 128.42 (2 CH), 129.53 (2 CH), 129.79 (2 CH), 132. 36 (C H), 135.03, 135.32, 137.77, 141.40, 145.04 and 148.29 (6 C), 189.84 and 199.80 (2 C=O) ppm. Anal. Calcd for C20H16O2S (320.41): C, 74.97; H, 5.03; S, 10.01. Found: C, 74.83; H, 4.86; S, 10.13.