Synthesis 2017; 49(03): 667-676
DOI: 10.1055/s-0036-1588078
paper
© Georg Thieme Verlag Stuttgart · New York

One-Pot Synthesis of α-Ylidene δ-Lactones from Functionalized Allylic Bromides in a Water–Isopropanol Medium

Misael Ferreira
a   Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil   Email: marcus.sa@ufsc.br
,
Tula B. Bisol
b   Instituto Federal de Santa Catarina, Campus Florianópolis, Florianópolis, SC 88020-300, Brazil
,
Henrique P. da Conceição
a   Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil   Email: marcus.sa@ufsc.br
,
Theo V. C. Russo
a   Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil   Email: marcus.sa@ufsc.br
,
Adailton J. Bortoluzzi
a   Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil   Email: marcus.sa@ufsc.br
,
Marcus M. Sá*
a   Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil   Email: marcus.sa@ufsc.br
› Author Affiliations
Further Information

Publication History

Received: 26 July 2016

Accepted after revision: 06 September 2016

Publication Date:
13 October 2016 (online)


Abstract

The one-pot microwave-assisted synthesis of a series of α-ylidene δ-lactones from (Z)-2-(bromomethyl)-2-alkenoates (derived from Morita–Baylis–Hillman reaction) in an aqueous environment is reported. The protocol includes regioselective base-mediated allylation of ethyl acetoacetate with (Z)-2-(bromomethyl)-2-alkenoates followed by decarboxylative hydrolysis, carbonyl reduction of the keto carboxylate intermediate, and acid-mediated cyclization of the resulting δ-hydroxy acid to furnish the α-ylidene δ-lactones with good overall yields. The synthesis was also performed in the stepwise mode, which allowed the isolation and full characterization of each intermediate involved in the one-pot method. The main features of this efficient transformation include the fast reaction rates, the use of a benign aqueous medium, the use of inexpensive and readily available reagents, the production of nearly innocuous residues, and the requirement for a single work-up and purification stage at the end of the process.

Supporting Information

 
  • References

    • 1a Sheldon RA. Chem. Soc. Rev. 2012; 41: 1437
    • 1b Anastas PT. Tetrahedron 2010; 66: 1026
    • 1c Tucker JL. Org. Process Res. Dev. 2010; 14: 328
    • 1d Bryan MC, Dillon B, Hamann LG, Hughes GJ, Kopach ME, Peterson EA, Pourashraf M, Raheem I, Richardson P, Richter D, Sneddon HF. J. Med. Chem. 2013; 56: 6007
    • 4a Zhao W, Chen F.-E. Curr. Org. Synth. 2012; 9: 873
    • 4b Climent MJ, Corma A, Iborra S. Chem. Rev. 2011; 111: 1072
    • 4c Broadwater SJ, Roth SL, Price KE, Kobaslija M, McQuade DT. Org. Biomol. Chem. 2005; 3: 2899
  • 5 Albrecht A, Albrecht Ł, Janecki T. Eur. J. Org. Chem. 2011; 2747
    • 6a Kupchan SM, Hemingway RJ, Werner D, Karim A, McPhail AT, Sim GA. J. Am. Chem. Soc. 1968; 90: 3596
    • 6b Dehal SS, Marples BA, Stretton RJ, Traynor JR. J. Med. Chem. 1980; 23: 90
    • 6c Chagonda LS, Lockey PM, Marples BA, Traynor JR. Steroids 1984; 43: 283
    • 6d McMurry JE, Dushin RG. J. Am. Chem. Soc. 1990; 112: 6942
    • 6e Acton N, Karle JM, Miller RE. J. Med. Chem. 1993; 36: 2552
    • 6f Heilmann J, Wasescha MR, Schmidt TJ. Bioorg. Med. Chem. 2001; 9: 2189
    • 7a Albrecht L, Wojciechowski J, Albrecht A, Wolf WM, Janecka A, Studzian K, Krajewska U, Rózalski M, Janecki T, Krawczyk H. Eur. J. Med. Chem. 2010; 45: 710
    • 7b Modranka J, Albrecht A, Janecki T. Synlett 2010; 2867
    • 7c Janecki T, Wasek T. Tetrahedron 2004; 60: 1049
    • 7d Albrecht L, Richter B, Krawczyk H, Jørgensen KA. J. Org. Chem. 2008; 73: 8337
    • 7e Krawczyk H, Albrecht L, Wojciechowski J, Wolf WM. Tetrahedron 2007; 63: 12583
    • 7f Krawczyk H, Sliwinski M, Kedzia J, Wojciechowski J, Wolf WM. Tetrahedron: Asymmetry 2007; 18: 2712
    • 7g Krawczyk H, Sliwinski M, Kedzia J, Wojciechowski J, Wolf WM. Tetrahedron: Asymmetry 2006; 17: 908
    • 7h Krawczyk H, Sliwinski M, Kedzia J. Tetrahedron: Asymmetry 2006; 17: 2817
    • 7i Krawczyk H, Sliwinski M. Tetrahedron 2003; 59: 9199
    • 8a Gupta A, Vankar YD. Tetrahedron 2000; 56: 8525
    • 8b Krishna PR, Kannan V, Sharma GV. M. J. Org. Chem. 2004; 69: 6467
    • 8c Leroy B. Tetrahedron Lett. 2005; 46: 7563
    • 9a Matsuda I. J. Organomet. Chem. 1987; 321: 307
    • 9b Basavaiah D, Satyanarayana T. Org. Lett. 2001; 3: 3619
    • 9c Kim SJ, Lee HS, Kim JN. Tetrahedron Lett. 2007; 48: 1069
    • 9d Mandal SK, Paira M, Roy SC. J. Org. Chem. 2008; 73: 3823
    • 9e Ramachandran PV, Bhattacharyya A. Heterocycles 2010; 80: 863
    • 9f Ramachandran PV, Pratihar D, Garner G, Raju BC. Tetrahedron Lett. 2011; 52: 4985
  • 10 Singh V, Batra S. Synthesis 2006; 63
    • 11a Ameer F, Drewes SE, Emslie ND, Kaye PT, Mann RL. J. Chem. Soc., Perkin Trans. 1 1983; 2293
    • 11b Gowrisankar S, Kim KH, Kim SH, Kim JN. Tetrahedron Lett. 2008; 49: 6241
    • 11c Kim KH, Lim JW, Lee J, Go MJ, Kim JN. Adv. Synth. Catal. 2014; 356: 3363

      Recent reviews on Morita–Baylis–Hillman reaction and synthetic applications:
    • 12a Basavaiah D, Veeraraghavaiah G. Chem. Soc. Rev. 2012; 41: 68
    • 12b Basavaiah D, Reddy BS, Badsara SS. Chem. Rev. 2010; 110: 5447
    • 12c Declerck V, Martinez J, Lamaty F. Chem. Rev. 2009; 109: 1
    • 13a Ferreira M, Sá MM. Adv. Synth. Catal. 2015; 357: 829
    • 13b Ferreira M, Assunção LS, Filippin-Monteiro FB, Creczynski-Pasa TB, Sá MM. Eur. J. Med. Chem. 2013; 70: 411
    • 13c Sá MM, Ferreira M, Caramori GF, Zaramello L, Bortoluzzi AJ, Faggion DJr, Domingos JB. Eur. J. Org. Chem. 2013; 5180
    • 13d Sá MM, Meier L. Heteroat. Chem. 2013; 24: 384
    • 13e Silveira GP, Ferreira M, Fernandes L, Moraski GC, Cho S, Hwang C, Franzblau SG, Sá MM. Bioorg. Med. Chem. Lett. 2012; 22: 6486
    • 14a Ferreira M, Fernandes L, Sá MM. J. Braz. Chem. Soc. 2009; 20: 564
    • 14b Meier L, Ferreira M, Sá MM. Heteroat. Chem. 2012; 23: 179
    • 14c Sá MM, Ferreira M, Lima ES, Santos I, Orlandi PP, Fernandes L. Braz. J. Microbiol. 2014; 45: 807
  • 15 CCDC 1484394 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.