Horm Metab Res 2012; 44(13): 975-979
DOI: 10.1055/s-0032-1316294
Humans, Clinical
© Georg Thieme Verlag KG Stuttgart · New York

Chronic Exercise Promotes Alterations in the Neuroendocrine Profile of Elderly People

E. S. Alves
1   Centro de Estudo em Psicobiologia do Exercício, São Paulo, Brazil
,
H. S. Souza
1   Centro de Estudo em Psicobiologia do Exercício, São Paulo, Brazil
,
J.P. P. Rosa
1   Centro de Estudo em Psicobiologia do Exercício, São Paulo, Brazil
,
F. S. Lira
1   Centro de Estudo em Psicobiologia do Exercício, São Paulo, Brazil
2   Departamento de Psicobiologia, Universidade Federal de São Paulo, Brazil
3   Laboratório de Fisiologia e Bioquímica do Exercício, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
,
G. D. Pimentel
4   Departamento de Medicina Interna, Universidade Estadual de Campinas, Brazil
,
R.V. T. Santos
5   Departamento de Biociências, Campus Baixada Santista, Universidade Federal de São Paulo, Brazil
,
L. M. Oyama
6   Departamento de Fisiologia, Disciplina de Fisiologia da Nutrição, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
,
A. R. Damaso
5   Departamento de Biociências, Campus Baixada Santista, Universidade Federal de São Paulo, Brazil
,
C. M. Oller do Nascimento
6   Departamento de Fisiologia, Disciplina de Fisiologia da Nutrição, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
,
V.A. R. Viana
1   Centro de Estudo em Psicobiologia do Exercício, São Paulo, Brazil
2   Departamento de Psicobiologia, Universidade Federal de São Paulo, Brazil
,
R. A. Boscolo
1   Centro de Estudo em Psicobiologia do Exercício, São Paulo, Brazil
2   Departamento de Psicobiologia, Universidade Federal de São Paulo, Brazil
,
V. Grassmann
1   Centro de Estudo em Psicobiologia do Exercício, São Paulo, Brazil
2   Departamento de Psicobiologia, Universidade Federal de São Paulo, Brazil
,
M. G. Santana
1   Centro de Estudo em Psicobiologia do Exercício, São Paulo, Brazil
2   Departamento de Psicobiologia, Universidade Federal de São Paulo, Brazil
7   Universidade Federal de Goiás - Campus Jataí
,
S. Tufik
2   Departamento de Psicobiologia, Universidade Federal de São Paulo, Brazil
,
M. T. de Mello
1   Centro de Estudo em Psicobiologia do Exercício, São Paulo, Brazil
2   Departamento de Psicobiologia, Universidade Federal de São Paulo, Brazil
› Author Affiliations
Further Information

Publication History

received 03 March 2012

accepted 22 May 2012

Publication Date:
29 June 2012 (online)

Abstract

Aging and physical inactivity are 2 factors that favour the development of cardiovascular disease, metabolic syndrome, obesity, and diabetes. In contrast, adopting a habitual moderate exercise routine may be a nonpharmacological treatment alternative for neuroendocrine aging disorders. We aimed to assess the effects of moderate exercise training on the metabolic profiles of elderly people with sedentary lifestyles. Fourteen sedentary, healthy, elderly male volunteers participated in a moderate training regimen for 60 min/day, 3 days/week for 24 weeks at a work rate equivalent to their ventilatory aerobic threshold. The environment was maintained at a temperature of 23±2°C, with a humidity of 60±5%. Blood samples for analysis were collected at 3 intervals: at baseline (1 week before training began), and 3 and 6 months after training. The training promoted increased aerobic capacity (relative VO2, and time and velocity to VO2max; (p<0.05)) and reduced serum α-MSH (p<0.05) after 3 months of training when compared with the baseline data. In addition, serum thyroid hormone (T3 and T4) was reduced after 6 months of training compared with baseline levels. Our results demonstrate that a moderate exercise training protocol improves the metabolic profile of older people, and metabolic adaptation is dependent on time.

 
  • References

  • 1 Weinert BT, Timiras PS. Invited review: Theories of aging. J Appl Physiol 2003; 95: 1706-1716
  • 2 Han TS, Tajar A, Lean ME. Obesity and weight management in the elderly. Br Med Bull 2011; 97: 169-196
  • 3 Starling RD. Energy expenditure and aging: effects of physical activity. Int Sport Nutr Exerc Meta 2001; 11: 208-217
  • 4 Mitoru P, Raptis SA, Dimitriadis G. Thyroid disease in older people. Maturitas 2011; 70: 5-9
  • 5 Lunenfeld B, Nieschlag E. Testosterone therapy in the aging male. Aging Male 2011; 10: 139-153
  • 6 Ceda G, Dall’Aglio E, Maggio M, Lauretani F, Bandinelli S, Falzoi C, Grimaldi W, Ceresini G, Corradi F, Ferrucci L, Valenti G, Hoffman AR. Clinical implications of the reduced activity of the GH-IGF-1 axis in older man. J Endocrinol Invest 2005; 28: 96-100
  • 7 Havel P. Peripheral Signals Conveying Metabolic Information to the Brain: Short-Term and Long-Term Regulation of Food Intake and Energy Homeostasis. Exp. Biol Med (Maywood) 2001; 226: 963-977
  • 8 Manini T, Everhart J, Patel K, Schoeller D, Colber LH, Visser M, Tylavsky F, Bauer DC, Goodpaster BH, Harris TB. Daily activity energy expenditure and mortality among older adults. JAMA 2006; 296: 171-179
  • 9 Alves ES, Lira FS, Santos RV, Tufik S, de Mello MT. Obesity, Diabetes and OSAS induce of sleep disorder: exercise as therapy. Lipids Health Dis 2011; 23 (10) 148
  • 10 Lira FS, Pimentel GD, Santos RV, Oyama LM, Damaso AR, Oller do Nascimento CM, Viana VA, Boscolo RA, Grassmann V, Santana MG, Esteves AM, Tufik S, de Mello MT. Exercise training improves sleep pattern and metabolic profile in elderly people in a time-dependent manner. Lipids Health Dis 2011; 10: 1-6
  • 11 Petersen A, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol 2005; 98: 1154-1162
  • 12 Alemán-Mateo H, Huerta RH, Esparza-Romero J, Méndez RO, Urquidez R, Valencia ME. Body composition by the four-compartment model: validity of the BOD POD for assessing body fat in Mexican elderly. Eur J Clin Nutr 2007; 61: 830-836
  • 13 Dittmar M. Reliability and variability of bioimpedance measures in normal adults: effects of age, gender, and body mass. Am J Phys Anthropol 2003; 122: 361-370
  • 14 Wasserman K, Stringer WW, Casaburi R, Koike A, Cooper CB. Determination of the anaerobic threshold by gas exchange: biochemical considerations, methodology and physiological effects. Z Kardiol 1994; 83: 1-12
  • 15 Lin CC, Li CI, Liu CS, Lin WY, Fuh MM, Yang SY, Lee CC, Li TC. Impact of lifestyle-related factors on all-cause and cause-specific mortality in patients with type 2 diabetes: the taichung diabetes study. Diabetes Care 2012; 35: 105-112
  • 16 Booth F, Laye M, Roberts M. Lifetime sedentary living accelerates some aspects of secondary aging. J Appl Physiol 2011; 111: 1497-1504
  • 17 Amati F, Dubé J, Coen P, Stefanovic M, Toledo F, Goodpaster B. Physical inactivity and obesity underlie the insulin resistance of aging. Diabetes Care 2009; 32: 1547-1549
  • 18 Longo B, On’kin J, Okwe A, Kabangu N, Fuele S. Metabolic syndrome, aging, physical inactivity, and incidence of type 2 diabetes in general African population. Diab Vasc Dis Res 2010; 7: 28-39
  • 19 Rosa Neto JC, Lira FS, Venancio DP, Cunha CA, Oyama LM, Pimentel GD, Tufik S, Oller do Nascimento CM, Santos RV, de Mello MT. Sleep deprivation affects inflammatory marker expression in adipose tissue. Lipids Health Dis 2010; 30 (09) 125
  • 20 Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature 2006; 443: 289-295
  • 21 Xu Y, Elmquist JK, Fukuda M. Central nervous control of energy and glucose balance: focus on the central melanocortin system. Ann NY Acad Sci 2011; 1243: 1-14
  • 22 Konner A, Klockner T, Bruning J. Control of energy homeostasis by insulin and leptin: targeting the arcuate nucleus and beyond. Phisiol Behav 2009; 97: 632-638
  • 23 Benoit SC, Air EL, Coolen LM, Strauss R, Jackman A, Clegg DJ, Seeley RJ, Woods SC. The catabolic action of insulin in the brain is mediated by melanocortins. J Neurosci 2002; 22: 9048-9052
  • 24 Honda K, Kamisoyama H, Saneyasu T, Sugahara K, Hasegawa S. Central administration of insulin suppresses food intake in chicks. Neurosci Lett 2007; 423: 153-157
  • 25 Lira FS, Rosa JC, Dos Santos RV, Venancio DP, Carnier J, Sanches Pde L, do Nascimento CM, de Piano A, Tock L, Tufik S, de Mello MT, Dâmaso AR, Oyama LM. Visceral fat decreased by long term interdisciplinary lifestyle therapy correlated positively with interleukin-6 and tumor necrosis factor alpha and negatively with adiponectin levels in obese adolescents. Metabolism 2011; 60: 359-365
  • 26 Lira FS, Rosa JJ, Yamashita A, Koyama C, Batista M, Seelaender M. Endurance training induces depot-specific changes in IL-10/TNF-alpha ratio in rat adipose tissue. Cytokine 2009; 45: 80-85
  • 27 Lira FS, Yamashita AS, Rosa JC, Tavares FL, Caperuto E, Carnevali Jr LC, Pimentel GD, Santos RV, Batista Jr ML, Laviano A, Rossi-Fanelli F, Seelaender M. Hypoyalamic inflammation is reversed by endurance training in anoretic-cachectic rats. Nutr Metab (Lond) 2011; 8: 60
  • 28 Catania A, Rajora N, Capsoni F, Minonzio F, Star RA, Lipton JM. The neuropeptide alpha-MSH has specific receptors on neutrophils and reduces chemotaxis in vitro. Peptides 1996; 17: 675-679
  • 29 Lipton J, Zhao H, Ichiyama T, Barsh G, Catania A. Mechanisms of antiinflammatory action of alpha-MSH peptides. In vivo and in vitro evidence. Ann NY Acad Sci 1999; 885: 173-182
  • 30 Kmiec Z. Aging and peptide control of food intake. Curr Protein Pept Sci 2011; 12: 1-9
  • 31 Pétervári E, Soós S, Székely M, Balaskó M. Aterations in the peptidergic regulation of energy balance in the course of aging. Curr Protein Pept Sci 2011; 12: 316-324
  • 32 Elmlinger M, Dengler T, Weinstock C, Kuehnel W. Endocrine alterations in the aging male. Clin Chem Lab Med 2003; 41: 934-941
  • 33 Sociedade Brasileira de Endocrinologia e Metabologia http://www.endocrino.org.br/
  • 34 Lumini-Oliveira J, Magalhães J, Pereira C, Aleixo I, Oliveira P, Ascensão A. Endurance training improves gastrocnemius mitochondrial function despite susceptibility to permeability transition. Mitochondrion 2009; 9: 454-462
  • 35 Bordenave S, Metz L, Flavier S, Lambert K, Ghanassia E, Dupuy AM, Michel F, Puech-Cathala AM, Raynaud E, Brun JF, Mercier J. Training-induced improvement in lipid oxidation in type 2 diabetes mellitus is related to alterations in muscle mitochondrial activity. Effect of endurance training in type 2 diabetes. Diabetes Metab 2008; 34: 162-168
  • 36 Dubé J, Amati F, Stefanovic-Racic M, Toledo F, Saures S, GoddPaster B. Exercise-induced alterations in intramyocellular lipids and insulin resistance: the athlete’s paradox revisited. Am J Physiol Endocrinol Metab 2008; 294: 882-888
  • 37 Belmonte M, Aoki M, Tavares F, Seelaender M. Rat myocellular and perimysial intramuscular triacylglycerol: a histological approach. Med Sci Sports Exerc 2004; 36: 60-67
  • 38 Song Y, Yao X, Ying H. Thyroid Hormone action in metabolic regulation. Protein Cell 2011; 5: 358-368
  • 39 Moeller LC, Broecker-Preuss M. Transcriptional regulation by nonclassical action thyroid hormone. Thyroid Res 2011; 4: S6
  • 40 Larsen F, Schiffer T, Sahlin K, Ekblom B, Weitzberg E, Lundberg J. Mitochondrial oxygen affinity predicts basal metabolic rate in humans. FASEB J 2011; 25: 2843-2852
  • 41 Mitchell CS, Savage DB, Dufour S, Schoenmakers N, Murgatroyd P, Befroy D, Halsall D, Northcott S, Raymond-Barker P, Curran S, Henning E, Keogh J, Owen P, Lazarus J, Rothman DL, Farooqi IS, Shulman GI, Chatterjee K, Petersen KF. Resistance to thyroid hormone is associated with raised energy expenditure. Muscle mitochondrial uncoupling an hyperphagia. J Clin Invest 2010; 120: 1345-1354
  • 42 Casas F, Pessemesse L, Grandemange S, Seyer P, Baris O, Gueguen N, Ramonatxo C, Perrin F, Fouret G, Lepourry L, Cabello G, Wrutniak-Cabello C. Overexpression of the mitochondrial T3 receptor induces skeletal muscle atrophy during age. PLoS One 2009; 4: e5631
  • 43 Laker M, Mayes P. Effect of hyperthyroidism and hypothyroidism on lipid and carbohydrate metabolism of the perfused rat liver. Biochem J 1991; 196: 247-255
  • 44 Irrcher I, Adhihetty PJ, Joseph AM, Ljubicic V, Hood DA. Regulation of mitochondrial biogenesis in muscle by endurance exercise. Sports Med 2003; 33: 783-793
  • 45 Martin 3  rd   WH, Spina RJ, Korte E, Yarasheski KE, Angelopoulos TJ, Nemeth PM, Saffitz JE. Mechanisms of Impaired Exercise Capacity in Short Duration Experimental Hyperthyroidism. J Clin Invest 1991; 88: 2047-2053
  • 46 Rone J, Dons R, Reed H. The effect of endurance training on serum triiodothyronine kinetics in man: physical conditioning marked by enhanced thyroid hormone metabolism. Clin Endocrinol (Oxf) 1992; 37: 325-330