Der Nuklearmediziner 2012; 35(01): 30-36
DOI: 10.1055/s-0031-1301351
Schilddrüsendiagnostik – Algorithmen und Leitlinien
© Georg Thieme Verlag KG Stuttgart · New York

Dosimetrie bei der Radioiodtherapie benigner und maligner Schilddrüsenerkrankungen

Dosimetry in Radioiodine Therapy of Benign and Malignant Thyroid Diseases
H. Hänscheid
1   Klinik und Poliklinik für Nuklearmedizin, Universität Würzburg
,
M. Lassmann
1   Klinik und Poliklinik für Nuklearmedizin, Universität Würzburg
› Author Affiliations
Further Information

Publication History

Publication Date:
15 March 2012 (online)

Zusammenfassung

Die Therapie benigner und maligner Erkrankungen der Schilddrüse mit radioaktivem Iod ist heute ein wichtiger Baustein in der Behandlung von Patienten. Es wird zunehmend akzeptiert, dass bei therapeutischer Anwendung von Radionukliden eine Dosimetrie in aller Regel sinnvoll ist, und diese ist zumindest in Deutschland seit einigen Jahren auch gesetzlich vorgeschrieben. Für die dosimetrischen Verfahren gibt es nationale und internationale Ansätze zur Standardisierung, die Interpretation der Ergebnisse und die therapeutischen Konsequenzen sind zum Teil aber immer noch uneinheitlich. In dieser Arbeit wird eine ausführliche Übersicht über die Grundideen und Verfahren der Dosimetrie bei der Radioiodtherapie benigner Erkrankungen sowie eine kurze Übersicht über die Dosimetrie bei der Behandlung des Schilddrüsenkarzinoms gegeben.

Abstract

Radioiodine therapy today is an important part of the treatment of benign and malignant thyroid diseases. The usefulness of dosimetry before therapeutic use of radionuclides is accepted more and more and at least in Germany it was made compulsory by law a few years ago. Although there have been international attempts at standardisation of dosimetric procedures, the interpretation of the results and consequences for therapy are not yet uniform. In this contribution we will provide an extensive overview of the basic principles and methods of dosimetry before radioiodine therapy of benign disease, as well as brief overview of dosimetry before treatment of thyroid cancer.

 
  • Literatur

  • 1 Andermann P, Schlogl S, Mader U et al. Intra- and interobserver variability of thyroid volume measurements in healthy adults by 2D versus 3D ultrasound. Nuklearmedizin 2007; 46: 1-7
  • 2 Bardies M, Chatal JF. Absorbed doses for internal radiotherapy from 22 beta-emitting radionuclides: beta dosimetry of small spheres. Phys Med Biol 1994; 39: 961-981
  • 3 Benua RS, Cicale NR, Sonenberg M et al. The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. Am J Roentgenol Radium Ther Nucl Med 1962; 87: 171-182
  • 4 Bockisch A, Jamitzky T, Derwanz R et al. Optimized dose planning of radioiodine therapy of benign thyroidal diseases. J Nucl Med 1993; 34: 1632-1638
  • 5 Chiesa C, Castellani MR, Vellani C et al. Individualized dosimetry in the management of metastatic differentiated thyroid cancer. Q J Nucl Med Mol Imaging 2009; 53: 546-561
  • 6 Cooper DS, Doherty GM, Haugen BR et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009; 19: 1167-1214
  • 7 Dietlein M, Dressler J, Eschner W et al. Procedure guideline for radioiodine test (Version 3). Nuklearmedizin 2007; 46: 198-202
  • 8 Dietlein M, Dressler J, Eschner W et al. Procedure guidelines for radioiodine therapy of differentiated thyroid cancer (version 3). Nuklearmedizin 2007; 46: 213-219
  • 9 Dietlein M, Dressler J, Grunwald F et al. Guideline for radioiodine therapy for benign thyroid diseases (version 4). Nuklearmedizin 2007; 46: 220-223
  • 10 Dorn R, Kopp J, Vogt H et al. Dosimetry-guided radioactive iodine treatment in patients with metastatic differentiated thyroid cancer: largest safe dose using a risk-adapted approach. J Nucl Med 2003; 44: 451-456
  • 11 Flux GD, Haq M, Chittenden SJ et al. A dose-effect correlation for radioiodine ablation in differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2010; 37: 270-275
  • 12 Hänscheid H, Lassmann M, Luster M et al. Blood dosimetry from a single measurement of the whole body radioiodine retention in patients with differentiated thyroid carcinoma. Endocr Relat Cancer 2009; 16: 1283-1289
  • 13 Hänscheid H, Lassmann M, Reiners C. Dosimetry prior to I-131-therapy of benign thyroid disease. Z Med Phys 2011; 21: 250-257
  • 14 Jonsson H, Mattsson S. Single uptake measurement for absorbed dose planning for radioiodine treatment of hyperthyroidism. Cancer Biother Radiopharm 2003; 18: 473-479
  • 15 Kolbert KS, Pentlow KS, Pearson JR et al. Prediction of absorbed dose to normal organs in thyroid cancer patients treated with 131I by use of 124I PET and 3-dimensional internal dosimetry software. J Nucl Med 2007; 48: 143-149
  • 16 Kulkarni K, Van Nostrand D, Atkins F et al. The relative frequency in which empiric dosages of radioiodine would potentially overtreat or undertreat patients who have metastatic well-differentiated thyroid cancer. Thyroid 2006; 16: 1019-1023
  • 17 Lassmann M, Hänscheid H, Chiesa C et al. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur J Nucl Med Mol Imaging 2008; 35: 1405-1412
  • 18 Lassmann M. Die patientenspezifische Dosimetrie bei der Radioiodtherapie des differenzerten Schilddrüsenkarzinoms. Der Nuklearmediziner 2010; 33: 222 -227
  • 19 Luster M, Clarke SE, Dietlein M et al. Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2008; 35: 1941-1959
  • 20 Marinelli LD, Quimby EH, Hine GJ. Dosage determination with radioactive isotopes; practical considerations in therapy and protection. Am J Roentgenol Radium Ther 1948; 59: 260-281
  • 21 Maxon HR, Thomas SR, Hertzberg VS et al. Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. N Engl J Med 1983; 309: 937-941
  • 22 Maxon 3 rd  HR, Smith HS. Radioiodine-131 in the diagnosis and treatment of metastatic well differentiated thyroid cancer. Endocrinol Metab Clin North Am 1990; 19: 685-718
  • 23 Menzel C, Grunwald F, Schomburg A et al. “High-dose” radioiodine therapy in advanced differentiated thyroid carcinoma. J Nucl Med 1996; 37: 1496-1503
  • 24 Merrill S, Horowitz J, Traino AC et al. Accuracy and optimal timing of activity measurements in estimating the absorbed dose of radioiodine in the treatment of Graves’ disease. Phys Med Biol 2011; 56: 557-571
  • 25 Pacini F, Schlumberger M, Dralle H et al. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol 2006; 154: 787-803
  • 26 Rink T, Bormuth FJ, Braun S et al. Concept and validation of a simple model of the intrathyroidal iodine kinetics. Nuklearmedizin 2004; 43: 21-25
  • 27 Schlogl S, Werner E, Lassmann M et al. The use of three-dimensional ultrasound for thyroid volumetry. Thyroid 2001; 11: 569-574
  • 28 Sgouros G, Kolbert KS, Sheikh A et al. Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med 2004; 45: 1366-1372
  • 29 Snyder W, Ford M, Warner G et al. MIRD Pamphlet No.11: “S,” absorbed dose per unit cumulated activity for selected radionuclides and organs. In New York: Society of Nuclear Medicine; 1975
  • 30 Stokkel MP, Handkiewicz Junak D, Lassmann M et al. EANM procedure guidelines for therapy of benign thyroid disease. Eur J Nucl Med Mol Imaging 2010; 37: 2218-2228
  • 31 Tuttle RM, Leboeuf R, Robbins RJ et al. Empiric radioactive iodine dosing regimens frequently exceed maximum tolerated activity levels in elderly patients with thyroid cancer. J Nucl Med 2006; 47: 1587-1591
  • 32 Verburg FA, Lassmann M, Mader U et al. The absorbed dose to the blood is a better predictor of ablation success than the administered 131I activity in thyroid cancer patients. Eur J Nucl Med Mol Imaging 2011; 38: 673-680