Klin Monbl Augenheilkd 2011; 228(4): 302-305
DOI: 10.1055/s-0031-1273211
Originalarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Relationship between Peripheral Blood Flow in Extremities and Choroidal Circulation

Verhältnis zwischen der peripheren Durchblutung in Extremitäten und chorioidalen ZirkulationA. Polunina[*] 1 , K. Gugleta[*] 1 , A. Kochkorov1 , R. Katamay1 , J. Flammer1 , S. Orgül1
  • 1Ophthalmology Department, University Hospital Basel, Basel, Switzerland
Further Information

Publication History

received: 20.9.2010

accepted: 23.11.2010

Publication Date:
11 April 2011 (online)

Zusammenfassung

Hintergrund: Das Ziel dieser Studie war das Verhältnis zwischen der peripheren und chorioidalen Zirkulation zu erforschen. Patienten und Methoden: Durch Die Aderhautdurchblutung (ADB) wurde mittels der Laser-Doppler-Flowmetrie in 73 gesunden Probanden gemessen. Basierend auf der Anamnese von kalten Händen und Füßen wurden die Studienteilnehmer in drei Gruppen unterteilt, nämlich solche „nie”, solche „manchmal” und solche „immer” mit kalten Akren. Zur objektiven Erfassung der Temperatur an den Fingerspitzen wurde ein Infrarotthermometer (IRT) benutzt. Varianzanalyse der ADB zwischen der Gruppen und zusätzlich eine Korrelation der ADB und IRT wurde durchgeführt. Ergebnisse: Die Gruppenverteilung war folgendermaßen: 37 Probanden in der Gruppe mit „nie” kalten Akren, 20 in der Gruppe mit „manchmal” und 16 Probanden in der Gruppe mit „immer” kalten Akren. Das durchschnittliche Alter war 44,2 ± 12,9 Jahre. ADB war in den Gruppen jeweils 11,5 ± 7,3 AU (arbiträre Einheiten), 13,6 ± 6,1 AU and 14,3 ± 4,6 AU. ANOVA P-Wert betrug 0,04, Pearson’s R für die Korrelation zwischen ADB und IRT war – 0,51, p < 0,001. Schlussfolgerung: Subjektiv und objektiv kalte Akren sind mit einer höheren ADB assoziiert, möglicherweise wegen der Umverteilung der Durchblutung im Körper.

Abstract

Background: The aim of this study was to explore the relationship between subjectively estimated and objectively measured finger temperature on the one, and choroidal blood flow on the other side. Patients and Methods: We measured submacular choroidal blood flow (CBF) in 73 healthy subjects. Based on the history of cold hands and feet, they were divided in three groups, reporting ”never”, ”sometimes” and ”always” having cold extremities. As an objective measure of finger temperature, it was recorded at the fingertips with an infrared thermometer (IRT). Analysis of variance for CBF based on the group selection and with blood and intraocular pressures as covariates was performed, as well as the correlation between CBF and IRT. Results: There were 37 subjects in the group with ”never” cold extremities, 20 in the group with ”sometimes”, and 16 subjects in the group with ”always” cold extremities. Average age was 44.2 ± 12.9 years. CBF was 11.5 ± 7.3 AU (arbitrary units), 13.6 ± 6.1 AU and 14.3 ± 4.6 AU in the three groups, respectively. The ANOVA p-value was 0.04. Pearson’s R for correlation between CBF and IRT was – 0.51, p < 0.001. Conclusion: Subjectively and objectively, colder extremities are associated with higher CBF, possibly due to the redistribution of blood flow.

References

  • 1 Alm A, Bill A. The oxygen supply to the retina. II. Effects of high intraocular pressure and of increased arterial carbon dioxide tension on uveal and retinal blood flow in cats. A study with radioactively labelled microspheres including flow determinations in brain and some other tissues.  Acta Physiol Scand. 1972;  84 306-319
  • 2 Ansari L, Manuel F, Suh J et al. Choroidal blood flow measurements in zero gravity (space-like) environment using laser-Doppler flowmetry.  Invest Ophthalmol Vis Sci. 2003;  44 E-Abstract 960
  • 3 Broadway D C, Drance S M. Glaucoma and vasospasm.  Br J Ophthalmol. 1998;  82 862-870
  • 4 Delaey C, Van De Voorde J. Regulatory mechanisms in the retinal and choroidal circulation.  Ophthalmic Res. 2000;  32 249-256
  • 5 Flammer J, Guthauser U, Mahler F. Do ocular vasospasms help cause low-tension glaucoma?.  Doc Ophthalmol Proc Ser. 1987;  49 397-399
  • 6 Flammer J, Haefliger I O, Orgul S et al. Vascular dysregulation: a principal risk factor for glaucomatous damage?.  J Glaucoma. 1999;  8 212-219
  • 7 Flammer J, Pache M, Resink T. Vasospasm, its role in the pathogenesis of diseases with particular reference to the eye.  Prog Ret Eye Res. 2001;  20 319-349
  • 8 Friedman E. Choroidal blood flow. Pressure-flow relationships.  Arch Ophthalmol. 1970;  83 95-99
  • 9 Gasser P, Flammer J, Guthauser U et al. Do vasospasms provoke ocular diseases?.  Angiology. 1990;  41 213-220
  • 10 Geiser M H, Riva C E, Diermann U. [Measuring choroid blood flow with a new confocal laser Doppler device].  Klin Monatsbl Augenheilkd. 1999;  214 285-287
  • 11 Gugleta K, Kochkorov A, Katamay R et al. On pulse-wave propagation in the ocular circulation.  Invest Ophthalmol Vis Sci. 2006;  47 4019-4025
  • 12 Gugleta K, Orgul S, Hasler P et al. Circulatory response to blood gas perturbations in vasospasm.  Invest Ophthalmol Vis Sci. 2005;  46 3288-3294
  • 13 Gugleta K, Orgul S, Hasler P W et al. Choroidal vascular reaction to hand-grip stress in subjects with vasospasm and its relevance in glaucoma.  Invest Ophthalmol Vis Sci. 2003;  44 1573-1580
  • 14 Gugleta K, Zawinka C, Rickenbacher I et al. Analysis of retinal vasodilation after flicker light stimulation in relation to vasospastic propensity.  Invest Ophthalmol Vis Sci. 2006;  47 4034-4041
  • 15 Hasler P W, Orgul S, Gugleta K et al. Vascular dysregulation in the choroid of subjects with acral vasospasm.  Arch Ophthalmol. 2002;  120 302-307
  • 16 Henry E, Newby D E, Webb D J et al. Peripheral endothelial dysfunction in normal pressure glaucoma.  Invest Ophthalmol Vis Sci. 1999;  40 1710-1714
  • 17 Kaeser P, Orgul S, Zawinka C et al. Influence of change in body position on choroidal blood flow in normal subjects.  Br J Ophthalmol. 2005;  89 1302-1305
  • 18 Kaiser H J, Flammer J, Messerli J. Vasospasm – a risk factor for nonarteriitic anterior ischemic optic neuropathy?.  Neuroophthalmology. 1996;  16 5-10
  • 19 Kavroulaki D, Gugleta K, Kochkorov A et al. Influence of gender and menopausal status on peripheral and choroidal circulation.  Acta Ophthalmol. 2010;  88 850-853
  • 20 Kistler A, Mariauzouls C, Berlepsch von K. Fingertip temperature as an indicator for sympathetic responses.  Int J Psychophysiol. 1998;  29 35-41
  • 21 Kochkorov A, Gugleta K, Zawinka C et al. Short-term retinal vessel diameter variability in relation to the history of cold extremities.  Invest Ophthalmol Vis Sci. 2006;  47 4026-4033
  • 22 Messerli J, Flammer J. [Central vein thrombosis in younger patients].  Klin Monatsbl Augenheilkd. 1996;  208 303-305
  • 23 Prunte C, Flammer J. Choroidal capillary and venous congestion in central serous chorioretinopathy.  Am J Ophthalmol. 1996;  121 26-34
  • 24 Riva C E, Titze P, Hero M et al. Choroidal blood flow during isometric exercises.  Invest Ophthalmol Vis Sci. 1997;  38 2338-2343
  • 25 Riva C E, Titze P, Hero M et al. Effect of acute decreases of perfusion pressure on choroidal blood flow in humans.  Invest Ophthalmol Vis Sci. 1997;  38 1752-1760
  • 26 Rubinstein E H, Sessler D I. Skin-surface temperature gradients correlate with fingertip blood flow in humans.  Anesthesiology. 1990;  73 541-545
  • 27 Truijen J, Bundgaard-Nielsen M, Lieshout van J J. A definition of normovolaemia and consequences for cardiovascular control during orthostatic and environmental stress.  Eur J Appl Physiol. 2010;  109 141-157
  • 28 Yu D Y, Alder V A, Cringle S J et al. Choroidal blood flow measured in the dog eye in vivo and in vitro by local hydrogen clearance polarography: validation of a technique and response to raised intraocular pressure.  Exp Eye Res. 1988;  46 289-303

1 The first two authors contributed equally to this work.

Konstantin Gugleta, MD

University Eye Clinic Basel

Mittlerestr. 91

CH-4031 Basel, Switzerland

Phone: ++ 41/61/2 65 87 56

Fax: ++ 41/61/2 65 86 52

Email: gugletak@uhbs.ch

    >