Synthesis 2021; 53(16): 2865-2873
DOI: 10.1055/a-1503-8068
paper

Lewis Acid Mediated [3+2] and [3+3] Annulations of an Azomethine Imine with Donor–Acceptor Cyclopropanes

Raghuramaiah Mandadapu
a   Syngenta Biosciences Pvt. Ltd. Santa Monica Works, Corlim, Ilhas, Goa, 403110, India
b   Department of Chemistry, Mangalore University, Mangalagangothri, 576119, Karnataka, India
,
Amol Satish Dehade
a   Syngenta Biosciences Pvt. Ltd. Santa Monica Works, Corlim, Ilhas, Goa, 403110, India
,
Shrikant Abhiman Shete
a   Syngenta Biosciences Pvt. Ltd. Santa Monica Works, Corlim, Ilhas, Goa, 403110, India
,
Mark Montgomery
c   Syngenta, Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
,
a   Syngenta Biosciences Pvt. Ltd. Santa Monica Works, Corlim, Ilhas, Goa, 403110, India
,
Ravindra Sonawane
a   Syngenta Biosciences Pvt. Ltd. Santa Monica Works, Corlim, Ilhas, Goa, 403110, India
› Author Affiliations


Abstract

Two different Lewis acids were used for developing [3+2] and [3+3] regioselective cycloaddition reactions of an azomethine imine with activated cyclopropanes. Scandium(III) triflate catalyzes a [3+2] cycloaddition reaction of the azomethine imine with cyclopropanes to form tetrahydropyrazolone derivatives and tricyclic tetrahydrofuran derivatives in moderate yields. Complementary to this, a novel [3+3] cycloaddition reaction of the azomethine imine with activated cyclopropanes was developed by using EtAlCl2 as a Lewis acid to form hexahydropyridazinone derivatives in high regioselectivity.

Supporting Information



Publication History

Received: 18 March 2021

Accepted after revision: 10 May 2021

Accepted Manuscript online:
10 May 2021

Article published online:
10 June 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Novak A, Testen A, Bezensek J, Groselj U, Hrast M, Kasunic M, Gobec S, Stanovnik B, Svete J. Tetrahedron 2013; 69: 6648
    • 1b Jungheim LN, Sigmund SK. J. Org. Chem. 1987; 52: 4007
    • 1c Breinlinger E, Burchat A, Dietrich J, Friedman M. WO2016/168638 A1, 2016
  • 2 Maetzke T, Stoller A, Wendeborn S, Szczepanski H. WO2001017972 A2, 2001
    • 3a Nájera C, Sansano JM, Yus M. Org. Biomol. Chem. 2015; 13: 8596
    • 3b Li Z, Yu H, Liu H, Zhang L, Jiang H, Wang B, Guo H. Chem. Eur. J. 2014; 20: 1731
    • 3c Kou Y, Zhao Z, Yang X, Kalita SJ, Chen X, Xie Z, Zhao Y, Huang Y. Asian J. Org. Chem. 2018; 7: 1830
  • 4 Pusavec E, Mirnic J, Šenica L, Grošely U, Stanovnik B, Svete J. Z. Naturforsch., B 2014; 69: 615
  • 5 Ogawa S, Nishimine T, Tokunaga E, Shibata N. Synthesis 2010; 19: 3274
  • 6 Zhou W, Li X, Li G, Wu Y, Chen Z. Chem. Commun. 2013; 49: 3552
  • 7 Liang L, Huang Y. Org. Lett. 2016; 18-11: 2604
  • 8 Du Q, Neudörfl J, Schmalz H. Chem. Eur. J. 2018; 24: 2379
  • 9 Shintani R, Hayashi T. J. Am. Chem. Soc. 2006; 128: 6330
  • 10 Shapiro ND, Shi Y, Toste D. J. Am. Chem. Soc. 2009; 131: 11654
  • 11 Chan A, Scheidt KA. J. Am. Chem. Soc. 2007; 129: 5334
    • 12a de Meijere A. Angew. Chem. Int. Ed. 1979; 18: 809 ; Angew. Chem. 1979, 91, 867
    • 12b Wenkert E, Alonso ME, Buckwalter BL, Chou KJ. J. Am. Chem. Soc. 1977; 99: 4778
    • 12c Reissig H.-U, Hirsch E. Angew. Chem. Int. Ed. 1980; 19: 813 ; Angew. Chem. 1980, 92, 839
    • 12d Reissig H.-U. Tetrahedron Lett. 1981; 22: 2981
    • 12e Yu M, Pagenkopf BL. Tetrahedron 2003; 59: 2765
    • 12f Bose G, Langer P. Tetrahedron Lett. 2004; 45: 3861
    • 12g Tanaka M, Ubukata M, Matsuo T, Yasue K, Matsumoto K, Kajimoto Y, Ogo T, Inaba T. Org. Lett. 2007; 9: 3331
    • 12h Emmett MR, Kerr MA. Org. Lett. 2011; 13: 4180
    • 12i Singh P, Varshnaya RK, Dey R, Banerjee P. Adv. Synth. Catal. 2020; 362: 1447
    • 12j Werz DB, Biju AT. Angew. Chem. Int. Ed. 2020; 59: 3385
    • 12k Cavitt MA, Phun LH, France S. Chem. Soc. Rev. 2014; 43: 804
    • 12l Matsumoto Y, Nakatake D, Yazaki R, Ohshima T. Chem. Eur. J. 2018; 24: 6062
    • 12m Augustin AU, Jones PG, Werz DB. Chem. Eur. J. 2019; 25: 11620
    • 12n Guin A, Rathod T, Gaykar RN, Roy T, Biju AT. Org. Lett. 2020; 22: 2276
    • 12o Mlostoń G, Kowalczyk M, Augustin AU, Jones PG, Werz DB. Beilstein J. Org. Chem. 2020; 16: 1288
    • 12p Zhang D, Yin L, Zhong J, Cheng Q, Cai H, Chen Y, Zhang Q.-F. Org. Biomol. Chem. 2020; 18: 6492
    • 12q Augustin AU, Werz DB. Acc. Chem. Res. 2021; 54: 1528
    • 13a Petzold M, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2019; 58: 6225
    • 13b Sabbatani J, Maulide N. Angew. Chem. Int. Ed. 2016; 55: 6780
    • 13c Augustin AU, Busse M, Jones PG, Werz DB. Org. Lett. 2016; 20: 820
    • 13d Kaicharla T, Roy T, Thangaraj M, Gonnade RG, Biju AT. Angew. Chem. Int. Ed. 2016; 55: 10061
    • 13e Kreft A, Lücht A, Grunenberg J, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2019; 58: 1955
    • 14a Chu Z.-Y, Li N, Liang D, Li Z.-H, Zheng Y.-S, Liu J.-K. Tetrahedron Lett. 2018; 59: 715
    • 14b Garve LK. B, Kreft A, Jones PG, Werz DB. J. Org. Chem. 2017; 82: 9235
    • 14c Buev EM, Moshkin VS, Sosnovskikh VY. Tetrahedron Lett. 2016; 57: 3731
    • 14d Alajarin M, Egea A, Orenes R.-A, Vidal A. Org. Biomol. Chem. 2016; 14: 10275
    • 15a Garve LK. B, Petzold M, Jones PG, Werz DB. Org. Lett. 2016; 18: 564
    • 15b Chidley T, Vemula N, Carson CA, Kerr MA, Pagenkopf BL. Org. Lett. 2016; 18: 2922
    • 15c Chagarovskiy AO, Vasin VS, Kuznetsov VV, Ivanova OA, Rybakov VB, Shumsky AN, Makhova NN, Trushkov IV. Angew. Chem. Int. Ed. 2018; 57: 10338
  • 16 Perreault C, Goudreau SR, Zimmer LE, Charette AB. Org. Lett. 2008; 10: 689
  • 17 Zhou Y.-Y, Li J, Ling L, Liao S.-H, Sun X.-L, Li Y.-X, Wang L.-J, Tang Y. Angew. Chem. Int. Ed. 2013; 52: 1452
  • 18 Novikov RA, Borisov DD, Zotova MA, Denisov DA, Tkachev YV, Korolev VA, Shulishov EV, Tomilov YV. J. Org. Chem. 2018; 83: 7836
  • 19 CCDC 2065295 (6c), 2065297 (8a), and 2006897(4) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 20 Ivanova OA, Andronov VA, Vasin VS, Shumsky AN, Rybakov VB. Org. Lett. 2018; 20: 7947
  • 21 The reaction of 2 with Sc(OTf)3 under the same conditions as described in Table 1, entry 17, in the absence of 1, confirms the formation of 11 as observed and identified by crude NMR and LC-MS.
  • 22 Pandey AK, Varshnaya RK, Banerjee P. Eur. J. Org. Chem. 2017; 1647