Klin Monbl Augenheilkd 2018; 235(09): 1001-1012
DOI: 10.1055/a-0667-0806
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Multimodale Bildgebung des Aderhautmelanoms mit seinen Differenzialdiagnosen, Therapie (Bestrahlungsplanung) und Verlaufskontrolle

Multimodal Imaging of the Choroidal Melanoma, with Differential Diagnosis, Therapy (Radiation Planning) and Follow-up
Daniela Nürnberg
1   Klinik und Poliklinik für Augenheilkunde, Charité – Universitätsmedizin Berlin, Berlin
,
Ira Seibel
1   Klinik und Poliklinik für Augenheilkunde, Charité – Universitätsmedizin Berlin, Berlin
2   Berlin Institute of Health (BIH), Berlin
,
Aline Isabel Riechardt
1   Klinik und Poliklinik für Augenheilkunde, Charité – Universitätsmedizin Berlin, Berlin
,
Claudia Brockmann
1   Klinik und Poliklinik für Augenheilkunde, Charité – Universitätsmedizin Berlin, Berlin
,
Oliver Zeitz
1   Klinik und Poliklinik für Augenheilkunde, Charité – Universitätsmedizin Berlin, Berlin
2   Berlin Institute of Health (BIH), Berlin
,
Jens Heufelder
3   BerlinProtonen, Charité – Universitätsmedizin Berlin, Berlin
,
Antonia M. Joussen
1   Klinik und Poliklinik für Augenheilkunde, Charité – Universitätsmedizin Berlin, Berlin
2   Berlin Institute of Health (BIH), Berlin
› Author Affiliations
Further Information

Publication History

eingereicht 05 June 2018

akzeptiert 26 July 2018

Publication Date:
14 September 2018 (online)

Zusammenfassung

Die Bildgebung von intraokularen Tumoren ist multimodal, vielseitig einsetzbar, in stetiger Weiterentwicklung. Sie ist damit unerlässlich für die Erkennung, Diagnose, Therapieplanung und Überwachung von intraokularen Tumoren. Für die Diagnostik und Verlaufskontrolle steht ein breites Spektrum bildgebender Verfahren zur Verfügung: die Farbbildaufnahme, Infrarotaufnahme, Autofluoreszenzaufnahme, Fluoreszenzangiografie (FAG) und Indocyaningrünangiografie (ICGA), optische Kohärenztomografie (OCT) und die Sonografie (US). In dieser Arbeit wird an verschiedenen Beispielen die multimodale Nutzung von Bildgebungsverfahren in der Diagnose, Therapie und Nachsorge okulärer Tumoren unter besonderer Berücksichtigung der Aderhautmelanome beschrieben.

Abstract

Imaging of intraocular tumors is multimodal, multi-purpose, and in continuous development. Therefore, imaging is indispensable for the detection, diagnosis, therapy and monitoring of intraocular tumours. A broad spectrum of imaging procedures is available for diagnostic testing and follow-up. This includes colour image acquisition, infrared imaging, autofluorescence imaging, fluorescence and indocyanine green angiography, optical coherence tomography (OCT) and sonography (US). In this article, the various investigations and their benefits are described using individual examples for the differential diagnosis of choroidal melanoma and retinal vascular tumours located in the fundus periphery.

 
  • Literatur

  • 1 Seider MI, Damato BE. Imaging the intraocular tumor. Expert Rev Ophthalmol 2014; 9: 387-399
  • 2 Shields CL, Manalac J, Das C. et al. Choroidal melanoma: clinical features, classification, and top 10 pseudomelanomas. Curr Opin Ophthalmol 2014; 25: 177-185
  • 3 Shields CL, Shields JA, Kiratli H. et al. Risk factors for growth and metastasis of small choroidal melanocytic lesions. Ophthalmology 1995; 102: 1351-1361
  • 4 Schalenbourg A, Zografos L. Pitfalls in colour photography of choroidal tumours. Eye (Lond) 2013; 27: 224-229
  • 5 CLARUSTM 500 from ZEISS Technical Specifications. Im Internet: http://www.zeiss.com/content/dam/Meditec/us/products/clarus-500/brochures/clarus500-specifications_us_31_022_0032iii_final.pdf Stand: 03.06.2018
  • 6 Atkinson A, Mazo C. Imaged Area of the Retina. Dunfermline, UK: Optos PLC; 2011. Im Internet: http://www.optos.com/Global/documents/CaseStudies_ImagedAreaOfTheRetina.pdf Stand: 24.02.2013
  • 7 Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 2008; 146: 496-500
  • 8 Shields CL, Kaliki S, Rojanaporn D. et al. Enhanced depth imaging optical coherence tomography of small choroidal melanoma: Comparison with choroidal nevus. Arch Ophthalmol 2012; 130: 850-856
  • 9 Tuncer S, Tugal-Tutkun I. Choroidal neovascularization secondary to choroidal nevus simulation an inflammatory lesion. Indian J Ophthalmol 2013; 61: 305-306
  • 10 Mashayekhi A, Siu S, Shields CL. et al. Retinal pigment epithelial trough: a sign of chronicity of choroidal nevi. Eur J Ophthalmol 2012; 22: 1019-1025
  • 11 Gündüz K, Pulido JS, Ezzat K. et al. Review of fundus autofluorescence in choroidal melanocytic lesions. Eye (Lond) 2009; 23: 497-503
  • 12 Holz FG, Schuett F, Kopitz J. et al. Inhibition of lysosomal degradative functions in RPE cells by retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 1999; 40: 737-743
  • 13 Katz ML, Robinson jr. WG. What is lipofuscin? Defining characteristics and differentiation from other autofluorescent lysosomal storage bodies. Arch Gerontol Geriatr 2002; 34: 169-184
  • 14 Theelen T, Boon CJF, Klevering BJ. et al. Fundusautofluoreszenz bei erblichen Netzhauterkrankungen – Fluoreszenzmuster in zwei verschiedenen Wellenlängenbereichen. Ophthalmologe 2008; 105: 1013-1022
  • 15 Kellner U, Kellner S. Autofluoreszenz. In: Kellner U, Wachtlin J. Hrsg. Retina. Diagnostik und Therapie der Erkrankungen des hinteren Augenabschnitts. Stuttgart: Thieme; 2008: 27-32
  • 16 Smith LT, Irvine AR. Diagnostic significance of orange pigment accumulation over choroidal tumors. Am J Ophthalmol 1973; 76: 212-216
  • 17 Kivelä T. Diagnosis of uveal melanoma. Dev Ophthalmol 2012; 49: 1-15
  • 18 Chin K, Finger PT. Autofluorescence characteristics of suspicious choroidal nevi. Optometry 2009; 80: 126-130
  • 19 Shields CL, Pirondini C, Bianciotto C. et al. Autofluorescence of choroidal nevus in 64 cases. Retina 2008; 28: 1035-1043
  • 20 Shields JA, Rodrigues MM, Sarin LK. et al. Lipofuscin pigment over benign and malignant choroidal tumors. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol 1976; 81: 871-881
  • 21 Shields CL, Manalac J, Das C. et al. Review of spectral domain enhanced depth imaging optical coherence tomography of tumors of the choroid. Indian J Ophthalmol 2015; 63: 117-121
  • 22 Torres VL. Optical coherence tomography enhanced depth imaging of choroidal tumors. AJO 2011; 151: 586-593
  • 23 Arepalli S, Kaliki S, Shields CL. Choroidal metastases: Origin, features, and therapy. Indian J Ophthalmol 2015; 63: 122-127
  • 24 Rojanaporn D, Kaliki S, Ferenczy SR. et al. Enhanced Depth Imaging Optical Coherence Tomography of Circumscribed Choroidal Hemangioma in 10 Consecutive Cases. Middle East Afr J Ophthalmol 2015; 22: 192-197
  • 25 von Stephen JR, Schachat AP, Wilkinson CP, Hinton D, SriniVas S, Wiedemann P. Retinal Imaging and Diagnostics. Retina, Vol. 1 (Part 1). Amsterdam: Elsevier Saunders; 2012
  • 26 Zeisberg A, Seibel I, Cordini D. et al. Long-term (4 years) results of choroidal hemangioma treated with proton beam irradiation. Graefes Arch Clin Exp Ophthalmol 2014; 252: 1165-1170
  • 27 Schalenbourg A, Piguet B, Zografos L. Indocyanine green angiographic findings in choroidal hemangiomas: a study of 75 cases. Ophthalmologica 2000; 214: 246-252
  • 28 Shanmugam PM, Ramanjulu R. Vascular tumors of the choroid and retina. Indian J Ophthalmol 2015; 63: 133-140
  • 29 Elagouz M, Stanescu-Segall D, Jackson TL. Uveal effusion syndrome. Surv Ophthalmol 2010; 55: 134-145
  • 30 Valmaggia C, Helbig H, Fretz C. Uveal Effusion Syndrome – Uveales Effusions-Syndrom. Klin Monatsbl Augenheilkd 2007; 224: 317-319
  • 31 Danish H, Ferris MJ, Balagamwala E. et al. Comparative outcomes and toxicities for ruthenium-106 versus palladium-103 in the treatment of choroidal melanoma. Melanoma Res 2018; 28: 120-125
  • 32 Eckert & Ziegler. Gebrauchsanweisung Ru-106 Augenapplikatoren. 2013
  • 33 Damato B, Patel I, Campbell IR. et al. Local tumor control after 106Ru brachytherapy of choroidal melanoma. Int J Radiat Oncol Biol Phys 2005; 63: 385-391
  • 34 Flühs D, Anastassiou G, Wening J. et al. The design and the dosimetry of bi-nuclide radioactive ophthalmic applicators. Med Phys 2004; 31: 1481-1488
  • 35 Dieckmann K, Bogner J, Georg D. et al. A linac-based stereotactic irradiation technique of uveal melanoma. Radiother Oncol 2001; 61: 49-56
  • 36 Eibl-Lindner K, Fürweger C, Nentwich M. et al. Robotic radiosurgery for the treatment of medium and large uveal melanoma. Melanoma Res 2016; 26: 51-57
  • 37 Chang MY, McCannel TA. Local treatment failure after globe-conserving therapy for choroidal melanoma. Br J Ophthalmol 2013; 97: 804-811
  • 38 Goitein M, Miller T. Planning proton therapy of the eye. Med Phys 1983; 10: 275-283
  • 39 Heufelder J, Cordini D, Fuchs H. et al. 5 Jahre Protonentherapie von Augentumoren am Hahn-Meitner Institute, Berlin. Z Med Phys 2004; 14: 64-71
  • 40 Dobler B, Bendl R. Precise modelling of the eye for proton therapy of intra-ocular tumours. Phys Med Biol 2002; 47: 593-613
  • 41 Seibel I, Hager A, Riechardt AI. et al. Antiangiogenic or Corticosteroid Treatment in Patients With Radiation Maculopathy After Proton Beam Therapy for Uveal Melanoma. Am J Ophthalmol 2016; 168: 31-39
  • 42 Horgan N, Shields CL, Mashayekhi A. et al. Classification and treatment of radiation maculopathy. Curr Opin Ophthalmol 2010; 21: 233-238
  • 43 Bianciotto C, Shields CL, Pirondini C. et al. Proliferative radiation retinopathy after plaque radiotherapy for uveal melanoma. Ophthalmology 2010; 117: 1005-1012
  • 44 Witmer MT, Parlitsis M, Patel S. et al. Comparison of ultra-widefield fluorescein angiography with the Heidelberg Spectralis® noncontact ultra-widefield module versus the Optos® Optomap® . Clin Ophthalmol 2013; 7: 389-394
  • 45 Materin MA, Bianciotto CG, Wu C. et al. Sector photocoagulation for the prevention of macular edema after plaque radiotherapy for uveal melanoma: a pilot study. Retina 2012; 32: 1601-1607
  • 46 Busch C, Löwen J, Pilger D. et al. Quantification of radiation retinopathy after beam proton irradiation in centrally located choroidal melanoma. Graefes Arch Exp Ophthalmol 2018; DOI: 10.1007/s00417-018-4036-3.
  • 47 Pena LA, Fuks Z, Kolesnick RN. Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res 2000; 60: 321-327
  • 48 Shields CL, Furuta M, Berman EL. et al. Choroidal nevus transformation into melanoma: analysis of 2514 consecutive cases. Arch Ophthalmol 2009; 127: 981-987