Ernährung & Medizin 2008; 23(3): 144-148
DOI: 10.1055/s-2008-1081376
VFED Wissen
© Hippokrates Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG

Wann sind Triglyzeride ein wichtiger Risikofaktor für die koronare Herzkrankheit?

Werner O. Richter
Further Information

Publication History

Publication Date:
03 September 2008 (online)

Bestimmte Fettstoffwechselstörungen sind ein wichtiger Risikofaktor für das vorzeitige Entstehen oder das Fortschreiten der Atherosklerose, insbesondere an den Koronararterien. In Abhängigkeit von der Schwere der Fettstoffwechselstörung, die sich nicht an der Höhe der Konzentration von Cholesterin oder Triglyzeriden im Blut festmachen lässt, von ihrer Dauer und von dem Vorhandensein anderer Risikofaktoren, nimmt die Gefahr für die Entwicklung der Atherosklerose zu. Die richtige Risikobeurteilung erfordert daher die sorgfältige Diagnose der Fettstoffwechselstörung und die Evaluation anderer kardiovaskulärer Risikofaktoren, wie Zigarettenrauchen oder Bluthochdruck. Wie lange die Fettstoffwechselstörung schon bestanden hat, ist in vielen Fällen schwer zu beurteilen.

Für die Risikobeurteilung erfordern die Diagnostik und Therapie der Hypertriglyzeridämie ein besonderes Wissen.

Weiterführende Literatur

  • 1 Austin M A, Brunzell J D, Fitch W L, Krauss R M. Inheritance of low density lipoprotein subclass patterns in familial combined hyperlipidemia.  Arteriosclerosis. 1990;  10 520-530
  • 2 Austin M A, Hokanson J E, Edwards K L. Hypertriglyceridemia as a cardiovascular risk factor.  Am J Cardiol. 1998;  81 7B-12B
  • 3 Ayyobi A F, McGladdery S H, McNeely M J. et al . Small, dense LDL and elevated apolipoprotein B are the common characteristics for the three major lipid phenotypes of familial combined hyperlipidemia.  Arterioscler Thromb Vasc Biol. 2003;  23 1289-1294
  • 4 Bach A C, Ingenbleek Y, Frey A. The usefulness of dietary medium-chain triglycerides in body weight control: fact or fancy?.  J Lipid Res. 1997;  37 708-726
  • 5 Bansal S, Buring J E, Rifai N. et al . Fasting compared with nonfasting triglycerides and risk of coronary events in women.  JAMA. 2007;  298 309-316
  • 6 Brunzell J D, Albers J J, Chait A. et al . Plasma lipoproteins in familial combined hyperlipidemia and monogenic familial hypertriglyceridemia.  J Lipid Res. 1983;  24 147-155
  • 7 Brunzell J D. Clinical practice. Hypertriglyceridemia.  N Engl J Med. 2007;  357 1009-1017
  • 8 Calabresi L, Donati D, Pazzucconi F. et al . Omacor in familial combined hyperlipidemia: effects on lipids and low density lipoprotein subclasses.  Atherosclerosis. 2000;  148 387-396
  • 9 Chajek-Shaul T, Berry E M, Ziv E. et al . Smoking depresses adipose lipoprotein lipase response to oral glucose.  Eur J Clin Invest. 1990;  20 299-304
  • 10 DAIS Study Group: Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: The Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet 2001 357: 905-910
  • 11 de Lany J P, Windhauser M M, Champagne C M, Bray G A. Differential oxidation of individual fatty acids in humans.  Am J Clin Nutr. 2000;  72 905-911
  • 12 Eberly L E, Stamler J, Neaton J D. Relation of triglyceride levels, fasting and nonfasting, to fatal and nonfatal coronary heart disease.  Arch Intern Med. 2003;  163 1077-1083
  • 13 Genest Jr. J J, Martin-Munley S S, McNamara J R. et al . Familial lipoprotein disorders in patients with premature coronary artery disease.  Circulation. 1992;  85 2025-2033
  • 14 Georgieva A M, van Greevenbrock M M, Krauss R M. et al . Subclasses of low-density lipoprotein and very low-density lipoprotein in familial combined hyperlipidemia: relationship to multiple lipoprotein phenotype.  Arterioscler Thromb Vasc Biol. 2004;  24 744-749
  • 15 Grundy S M, Cleeman J I, Merz C N. et al . Implications of recent clinical trials for the National Cholesterol Education Program Treatment Panel III Guidelines.  Circulation. 2004;  110 227-229
  • 16 Grunnet N, Kondrup J. The effect of ethanol on the beta-oxidation of fatty acids.  Alcohol Clin Exp Res. 1986;  10 (Suppl.) 64S-68S
  • 17 Harris W S. n-3 fatty acids and lipoproteins: comparison of results from human and animal studies.  Lipids. 1996;  31 243-252
  • 18 Hokanson J E, Austin M A, Zambon A, Brunzell J D. Plasma triglyceride and LDL heterogeneity in familial combined hyperlipidemia.  Arterioscler Thromb. 1993;  13 427-433
  • 19 Hokanson J E, Austin M A. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies.  J Cardiovasc Rsik. 1996;  3 213-219
  • 20 Hopkins P H, Heiss G, Ellison R C. et al . Coronary artery disease in familial combined hyperlipidemia and familial hypertriglyceridemia: a case-control comparison from the National Heart, Lung and Blood Institute Family Heart Study.  Circulation. 2003;  108 519-523
  • 21 Howard B V. Insulin resistance and lipid metabolism.  Am J Cardiol. 1999;  84 28J-32J
  • 22 Jeppesen J, Hein H O, Suadicani P, Gyntelberg F. Triglyceride concentration and ischemic heart disease: an eight-year follow-up in the Copenhagen Male Study.  Circulation. 1999;  97 1029-1036
  • 23 Keech A, Simes RJ Barter P. et al . Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study).  Lancet. 2005;  366 1849-1861
  • 24 Lefebvre A M, Peinado-Onsurbe J, Leitersdorf I. et al . Regulation of lipoprotein metabolism by thiazolidindiones occurs through a distinct but complementary mechanism relative to fibrates.  Arterioscler Thromb Vasc Biol. 1997;  17 1756-1764
  • 25 Martin G, Schoonjans K, Lefebvre A M. et al . Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARa and PPARg activators.  J Biol Chem. 1997;  272 28 210-28 217
  • 26 Mensink R P, Zock P L, Kester A D, Katan M B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials.  Am J Clin Nutr. 2003;  77 146-1155
  • 27 Miller M, Seidler A, Moalemi A, Pearson T A. Normal triglyceride levels and coronary artery disease events: the Baltimore Coronary Observational Long-Term Study.  J Am Coll Cardiol. 1998;  31 1252-1257
  • 28 Mittendorfer B, Sidossis L S. Mechanism for the increase in plasma triacylglycerol concentrations after consumption of short-term, high-carbohydrate diets.  Am J Clin Nutr. 2001;  73 892-899
  • 29 Montori V M, Farmer A, Wollan P C, Dinneen S F. Fish oil supplementation in type 2 diabetes.  Diabetes Care. 2000;  23 1407-1415
  • 30 Nordestgaard B G, Benn M, Schnohr P, Tybjaerg-Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women.  JAMA. 2007;  298 299-308
  • 31 Otvos J D, Collins D, Freedman D S. et al . Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial.  Circulation. 2006;  113 1556-1563
  • 32 Pschierer V, Richter W O, Schwandt P. Primary chylomicronemia in patients with severe familial hypertriglyceridemia responds to long-term treatment with n-3 fatty acids.  J Nutr. 1995;  125 1490-1495
  • 33 Richter W O, Schwandt P. Medikamentöse Therapie von Fettstoffwechselstörungen. In: Schwandt P, Richter WO, Parhofer KG Handbuch der Fettstoffwechselstörungen. Stuttgart, New York; Schattauer 2001: 436-527
  • 34 Richter W O, Eckardstein von A. Fettstoffwechsel. In: Siegenthaler W, Blum H, Hrsg Klinische Pathophysiologie. 9. Aufl Stuttgart; Thieme 2006
  • 35 Richter W O. Chylomicronemia and chylomicronemia syndrome. In: Gotto AM, Mancini M, Richter WO, Schwandt P, eds Treatment of Severe Dyslipoproteinemia in the Prevention of Coronary Heart Disease 3. Basel; Karger 1992: 164-173
  • 36 Rubins H B, Robins S J, Collins D. et al . Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol.  N Engl J Med. 1999;  341 410-418
  • 37 Savolainen M J, Baroana E, Leo M A, Lieber C S. Pathogenesis of the hypertriglyceridemia at early stages of alcoholic liver injury in the baboon.  J Lipid Res. 1986;  27 1073-1089
  • 38 Schoonjans K, Watanabe M, Suzuki H. et al . Induction of the acyl-coenzyme A synthetase gene by fibrates and fatty acids is mediated by a peroxisome proliferator response element in the C promoter.  J Biol Chem. 1995;  270 19 269-19 276
  • 39 Semenkovich C F. Insulin resistance and atherosclerosis.  J Clin Invest. 2006;  116 1813-1822
  • 40 Smelt A H, de Beer F. Apolipoprotein E and familial dysbetalipoproteinemia: clinical, biochemical, and genetic aspects.  Semin Vasc Med. 2004;  4 249-257
  • 41 Välimäki M, Taskinen M R, Ylikahri R. et al . Comparison of the effects of two different doses of alcohol on serum lipoproteins, HDL-subfractions and apolipoproteins A-I and A-II: a controlled study.  Eur J Clin Invest. 1988;  18 472-480
  • 42 Zambon A, Brown B G, Deeb S S, Brunzell J D. Genetics of apolipoprotein B and apolipoprotein A-I and premature coronary artery disease.  J Intern Med. 2006;  259 473-480

Prof. Dr. Werner O. Richter

Institut für Fettstoffwechsel und Hämorheologie

Blumenstraße 6

86949 Windach

    >