RSS-Feed abonnieren
DOI: 10.1055/s-2008-1078494
Synthesis of Pharmacologically Active Apomorphines by Direct N-Substitution on the Aporphine Backbone
Publikationsverlauf
Publikationsdatum:
11. Juni 2008 (online)
Abstract
A method has been developed for the direct N-substitution of aporphines comprising the N-oxidation-N-deprotection-N-alkylation sequence. This methodology was found to be insensitive to the change in the substitution pattern of rings A or D, therefore it is presumed to be applicable also for aporphines derived from total synthesis and natural sources.
Key words
alkaloids - transition metals - protecting groups - medicinal chemistry - oxidations
- 1 
             
            
Ríos JL.Máñez S.Giner RM.Recio MC. The Alkaloids Vol. 53:Cordell GA. Academic; New York: 2000. p.57 - For recent reviews, see:
 - 2a 
             
            
Chrzanowska M.Rozwadowska MD. Chem. Rev. 2004, 104: 3341 - 2b 
             
            
Griesbeck AG.Hoffmann N.Warzecha KD. Acc. Chem. Res. 2007, 40: 128 - 2c 
             
            
Lefrance M.Blaquiere N.Fagnou K. Eur. J. Org. Chem. 2007, 811 - 3 
             
            
Casy AF.Parfitt RT. Opioid Analgesics Plenum Press; New York London: 1986. - 4a 
             
            
Guinaudeau H.Leboeuf M.Cavé A. J. Nat. Prod. 1994, 57: 1033 - 4b 
             
            
Clement JA.Yode BJ.Kingston DGI. Mini-Rev. Org. Chem. 2004, 1: 183 ; and references therein - 5a 
             
            
Zhang A.Zhang Y.Branfman AR.Baldessarini RJ.Neumeyer JL. J. Med. Chem. 2007, 50: 171 - 5b 
             
            
Zhang A.Neumeyer JL.Baldessarini RJ. Chem. Rev. 2007, 107: 274 ; and references therein - 6 
             
            
Berényi S.Csutorás Cs.Sipos A. Curr. Med. Chem. 2008, DOI: 10.2174/156801405774330421 - 7a 
             
            
Speyer E.Rosenfeld H. Ber. Dtsch. Chem. Ges. 1925, 58: 1125 - 7b 
             
            
Bertgen C.Fleischhacker W.Vielböck F. Chem. Ber. 1967, 100: 3002 - 7c 
             
            
Hosztafi S.Makleit S.Bognár R. Acta Chim. Acad. Sci. Hung. 1980, 103: 371 - 8 
             
            
Hosztafi S.Makleit S. ACH-Models Chem. 1996, 133: 401 - 9 
             
            
Søndergaard K.Kristensen JL.Gillings N.Begtrup M. Eur. J. Org.Chem. 2005, 4428 - 10 
             
            
Garrido JMPJ.Delerue-Matos C.Borges F.Macedo TRA.Oliveira-Brett AM. J. Chem. Soc., Perkin Trans. 2 2002, 1713 - 11 
             
            
McCamley K.Ripper JA.Singer RD.Scammells PJ. J. Org. Chem. 2003, 68: 9847 - 12a 
             
            
Pai BR.Shanmugasundaram G. Tetrahedron 1965, 21: 2579 - 12b 
             
            
Singh OV.Huang W.-J.Chen C.-H.Lee S.-S. Tetrahedron Lett. 2007, 48: 8166 - 13 
             
            
Berényi S.Makleit S.Szilágyi L. Acta Chim. Hung. 1984, 117: 307 - 14 
             
            
Yamaguchi K.Mizugaki T.Ebitani K.Kaneda K. New J. Chem. 1999, 23: 799 - 15 
             
            
Choudary BM.Bharathi B.Venkat Reddy C.Kantam ML.Raghavan KV. Chem. Commun. 2001, 1736 - 16a 
             
            
Berényi S.Makleit S.Rantal F. Acta Chim. Hung. 1985, 120: 201 - 16b 
             
            
Simon C.Berényi S.Makleit S.Fekete V. Acta Chim. Hung. 1987, 124: 497 - 16c 
             
            
Hosztafi S.Makleit S. Synth. Commun. 1996, 26: 3909 - 16d 
             
            
Sipos A.Debreceni Sz.Szabó R.Gyulai Zs.Berényi S. Synth. Commun. 2007, 37: 2549 - 16e 
             
            
Berényi S.Kiss B.Schmidt É.Greiner I. Bioorg. Med. Chem. 2008, 16: 3773 - 18 
             
            
Csutorás Cs.Berényi S.Makleit S. Synth. Commun. 1996, 26: 2251 
References and Notes
         General Procedure for the N-Substitution of Aporphines
         
Apocodeine base (2.92 mmol) and Na2WO4 (300 mg, 1.02 mmol) was dissolved in H2O-1,4-dioxane (1:2, 10 mL) and cooled to 0 °C for the dropwise addition of H2O2 (30% w/v, 12 mmol). The reaction mixture was stirred at r.t. for 3.5 h. The excess
         H2O2 was quenched by addition of small portions of MnO2 at 0 °C and the presence of the peroxide determined by KI-starch paper. The reaction
         mixture, containing some overoxidized product as dark precipitation, was then vacuum
         filtered through a short pad of Celite. Solvent was removed in vacuo to give the crude
         product as a pale brown solid. It was immediately turned into hydrochloride salt by
         dissolving in a few drops of CHCl3 and dropping some EtOH sat. with HCl gas. After filtration, the mixture of minor
         apocodeine·HCl and major apocodeine N-oxide·HCl was dissolved in MeOH (10 mL) followed by the addition of FeSO4·7H2O (2 equiv) at 0 °C. The reaction mixture was then left to stir at r.t. for 1 h. Conversion
         was followed by TLC (80% CH2Cl2-20% MeOH). The reaction solvent was removed in vacuo and the residue redissolved
         in a 0.1 M EDTA solution adjusted to pH 10 by addition of NH3 (70 mL). The aqueous phase was then extracted with CHCl3 (3 × 30 mL). The combined organic phase was dried over MgSO4, filtered, and the solvent removed in vacuo to give dark brown mixture of apocodeine
         and norapocodeine. Norapocodeine was isolated by means of silica column chromatography
         (eluent: 80% CH2Cl2-20% MeOH).
Physical and spectral data of the products of the synthetic route from (-)-(R)-2-bromoapocodeine (14) to (-)-(R)-N-propyl-2-bromonorapomorphine (10) are detailed to represent the described method.
         (-)-(
         R
         )-2-Bromoapocodeine N
         -Oxide Hydrochloride (24·HCl)
         
Off-white, plate-shape crystals; mp >250 °C (Et2O); [α]D
         25 -168 (c 0.1, DMSO); R
         
            f
             base = 0.21 (CHCl3-MeOH, 8:2). HRMS (EI): m/z (%) calcd for C18H18BrNO3
         +: 375.0470 [M+]; found: 375.0482 (100) [M+]. 1H NMR (400 MHz, DMSO-d
         6): δ = 7.44 (1 H, s, C1-H), 7.14 (1 H, s, C3-H), 6.77-6.70 (2 H, 2 d, C8-H, C9-H,
         J
         8-9 = 8.1 Hz), 6.14 (1 H, br s, OH), 5.32 (1 H, td, C6a-H, J
         6a-7a 9.4 Hz, J
         6a-7b 2.7 Hz), 3.77 (3 H, s, C10-OCH3), 3.70-2.94 (6 H, m, C4-Ha, C4-Hb, C5-Ha, C5-Hb, C7-Ha, C7-Hb), 2.91 (3 H, s, NCH3). 13C NMR (100 MHz, DMSO-d
         6): δ = 146.61 (C10), 144.43 (C9), 136.19-114.78 (10 C, arom.), 75.09 (C6a), 60.56
         (C5), 56.23 (C10-OCH3), 54.51 (N-CH3), 37.39 (C7), 25.81 (C4).
         (-)-(
         R
         )-2-Bromonorapocodeine Hydrochloride (34·HCl)
         
White, cubic crystals; mp >250 °C (Et2O); [α]D
         25 -78 (c 0.1, DMSO); R
         
            f
             base = 0.17 (CHCl3-MeOH, 8:2). HRMS (EI): m/z (%) calcd for C17H17BrNO2
         +: 346.0437 [M+ + 1]; found: 346.0444 (100) [M+ + 1]. 1H NMR (400 MHz, DMSO-d
         6): d = 7.41 (1 H, s, C1-H), 7.07 (1 H, s, C3-H), 6.69-6.62 (2 H, 2 d, C8-H, C9-H,
         J
         8-9 = 8.0 Hz), 6.09 (1 H, br s, OH), 4.13 (1 H, td, C6a-H, J
         6a-7a = 9.1 Hz, J
         6a-7b = 2.5 Hz), 3.83 (3 H, s, C10-OCH3), 3.09-2.18 (7 H, m, C4-Ha, C4-Hb, C5-Ha, C5-Hb, C7-Ha, C7-Hb, NH). 13C NMR (100 MHz, DMSO-d
         6): d = 147.12 (C10), 144.76 (C9), 137.28-113.19 (10 C, arom.), 56.47 (C10-OCH3), 53.71 (C6a), 43.56 (C5), 37.18 (C7), 26.66 (C4).
(-)-(R)-N-Propyl-2-bromonorapocodeine (44) and (-)-(R)-N-propyl-2-bromonorapomorphine (10) are characterized in ref. 16a.