RSS-Feed abonnieren
DOI: 10.1055/s-2008-1078268
[1,2]-Wittig Rearrangement of (Benzyloxy)acetamides
Publikationsverlauf
Publikationsdatum:
21. August 2008 (online)

Abstract
[1,2]-Wittig rearrangement of (benzyloxy)acetamides can lead to substituted α-hydroxyamides in good yields and good diastereoselectivity.
Key words
[1,2]-Wittig rearrangement - amides - phase-transfer catalysis
- 1 
             
            Wittig G.Löhmann L. Liebigs Ann. Chem. 1942, 550: 260
- 2a 
             
            Marshall JA. In Comprehensive Organic Synthesis Vol. 3:Trost BM.Fleming I. Pergamon; London: 1991. p.975Reference Ris Wihthout Link
- 2b 
             
            Tomooka K.Yamamoto H.Nakai T. Liebigs Ann./Recl. 1997, 1275Reference Ris Wihthout Link
- 3 
             
            Schöllkopf U. Angew. Chem., Int. Ed. Engl. 1970, 9: 763
- 4a 
             
            Maleczka RE.Geng F. J. Am. Chem. Soc. 1998, 120: 8551Reference Ris Wihthout Link
- 4b 
             
            Tomooka K.Igarashi T.Nakai T. Tetrahedron 1994, 50: 5927Reference Ris Wihthout Link
- 4c 
             
            Gärtner P.Letschnig MF.Knollmüller M.Völlenkle H. Tetrahedron: Asymmetry 1999, 10: 4811Reference Ris Wihthout Link
- Synthetic applications of [1,2]-Wittig rearrangement:
- 5a 
             
            Schreiber SL.Goulet MT.Schulte G. J. Am. Chem. Soc. 1987, 109: 4718Reference Ris Wihthout Link
- 5b 
             
            Schreiber SL.Goulet MT. Tetrahedron Lett. 1987, 28: 1043Reference Ris Wihthout Link
- 5c 
             
            Grindley TB.Wickramage C. J. Carbohydr. Chem. 1988, 7: 661Reference Ris Wihthout Link
- 5d 
             
            Yadav JS.Ravishankar R. Tetrahedron Lett. 1991, 32: 2629Reference Ris Wihthout Link
- 5e 
             
            Tomooka K.Kikuchi M.Igawa K.Suzuki M.Keong P.-H.Nakai T. Angew. Chem. Int. Ed. 2000, 39: 4502Reference Ris Wihthout Link
- 6a 
             
            Curtin DY.Leskowitz S. J. Am. Chem. Soc. 1951, 73: 2633Reference Ris Wihthout Link
- 6b 
             
            Curtin DY.Proops WR. J. Am. Chem. Soc. 1954, 76: 494Reference Ris Wihthout Link
- 6c 
             
            Paquette LA.Zeng Q. Tetrahedron Lett. 1999, 40: 3823Reference Ris Wihthout Link
- 6d 
             
            Vilotijevic I.Yang J.Hilmey D.Paquette LA. Synthesis 2003, 1872Reference Ris Wihthout Link
- 7 
             
            Beaudoin Bertrand M.Wolfe JP. Org. Lett. 2006, 8: 4661
- 8 
             
            Cast J.Stevens TS.Holmes J. J. Chem. Soc. 1960, 3521
- 9 
             
            Miyashita A.Matsuoka Y.Suzuki Y.Iwamoto K.-I.Higashino T. Chem. Pharm. Bull. 1997, 45: 1235
- 10 
             
            Van der Stelt C.Heus WJ.Haasjes A. Recl. Trav. Chim. Pays-Bas 1973, 92: 493
- 11 
             
            Kitagawa O.Momose S.-I.Yamada Y.Shiro M.Taguchi T. Tetrahedron Lett. 2001, 42: 4865
- 12 
             
            Garbi A.Allain L.Chorki F.Ourévitch M.Crousse B.Bonnet-Delpon D.Nakai T.Bégué J.-P. Org. Lett. 2001, 3: 2529
- 13 
             
            Barbazanges M.Meyer C.Cossy J. Org. Lett. 2007, 9: 3245
- 16 
             
            Tomooka K.Yamamoto H.Nakai T. J. Am. Chem. Soc. 1996, 118: 3317
- 17a 
             
            Schöllkopf U.Fellenberger K.Rizk M. Liebigs Ann. Chem. 1970, 734: 106Reference Ris Wihthout Link
- 17b 
             
            Tomooka K.Harada M.Hanji T.Nakai T. Chem. Lett. 2000, 1394Reference Ris Wihthout Link
- 18a 
             
            Myers AG.Yang BH.Kopecky DJ. Tetrahedron Lett. 1996, 37: 3623Reference Ris Wihthout Link
- 18b 
             
            Myers AG.Yang BH.Chen H.McKinstry L.Kopecky DJ.Gleason JL. J. Am. Chem. Soc. 1997, 119: 6496Reference Ris Wihthout Link
- 19 
             
            Tanaka T.Hiramatsu K.Kobayashi Y.Ohno H. Tetrahedron 2005, 61: 6726
- 20a 
             
            Lesuisse D.Berchtold GA. J. Org. Chem. 1988, 53: 4992Reference Ris Wihthout Link
- 20b 
             
            Coghlan DR.Hamon DPG.Massy-Westropp RA.Slobedman D. Tetrahedron: Asymmetry 1990, 1: 299Reference Ris Wihthout Link
- 20c 
             
            Park J.Pedersen SF. Tetrahedron 1992, 48: 2069Reference Ris Wihthout Link
References and Notes
         Representative
            Procedure for the Preparation of (Benzyloxy)acetamides 3
         
To
         a solution of alcohol 1 (1.1 mmol) and
         bromoacetyl-pyrrolidine (2, 1 mmol) in
         toluene (15 mL), at r.t., was added n-Bu4NHSO4 (0.2
         mmol) and a 35% aq NaOH solution (15 mL). The mixture was
         then stirred vigorously at r.t., and the reaction was monitored
         by TLC. After 3-4 h, H2O (20 mL) and Et2O
         (20 mL) were added at 0 ˚C. The aqueous layer was
         extracted with Et2O (5 × 30 mL), and the combined organic
         layers were washed with sat. aq NH4Cl soln (50 mL), dried
         over MgSO4, and concentrated in vacuo. The crude residue
         was purified on SiO2 (PE-EtOAc) to afford(benzyloxy)acetamide 3. Amide 3k with R¹ = (CH2)2OTBS
         (Table 
         [²]
         , entry
         11) was obtained from amide 3f (Table 
         [¹]
         , entry 6) by using the
         following sequence: 1) O3, MeOH, -78 ˚C
         then Ph3P, CH2Cl2, -78 ˚C
         to r.t.; 2) NaBH4, EtOH, 0 ˚C; 3) TBSCl,
         Et3N, DMAP, CH2Cl2, 0 ˚C (60% over
         3 steps).
         Representative
            Procedure for the [1,2]-Wittig Rearrangement of
            (Benzyloxy)acetamides 3
         
To a solution of(benzyloxy)acetamide 3 (0.2 mmol) in THF (3 mL), at -30 ˚C,
         was added dropwise a 1 M solution of LiHMDS in THF (2.5 equiv).
         The reaction mixture was then warmed to 0 ˚C over
         2-3 h, before being hydrolyzed with sat. aq NH4Cl
         soln (10 mL). The aqueous layer was then extracted with Et2O
         (3 × 20 mL). The combined organic layers were dried over
         MgSO4, and concentrated in vacuo. The crude residue was
         purified on SiO2 (PE-EtOAc) to afford α-hydroxyamide 4.
Similarities in term of chemical shift between the different hydroxyamides 4 were particularly relevant for the proton at the α-position of the amide, for which δmajor < δminor in all cases.
22In all cases ³ J major > ³ J minor except for hydroxyamide 4i (Table [²] , entry 9). For compound 4i, ³ J major = 4.3 Hz and ³ J minor = 5.0 Hz. Therefore, the syn stereochemistry remained ambiguous in this latter case.
 
    