Subscribe to RSS
DOI: 10.1055/s-2008-1078046
Synthesis of l-Cladinose Using Enantioselective Desymmetrization
Publication History
Publication Date:
10 September 2008 (online)

Abstract
l-Cladinose, a neutral sugar found in erythromycins and azithromycins, has been synthesized efficiently using enantioselective monobenzoylation of 2-propenylglycerol in the presence of the imine-CuCl2 catalysts to elaborate the stereogenic quaternary center.
Key words
l-mycarose - l-cladinose - desymmetrization - quaternary centers - imine-CuCl2
- 1
Johnson DA.Liu H.-w. In Comprehensive Chemistry of Natural Products Chemistry Vol. 3:Barton D.Nakanishi K.Meth-Cohn O. Pergamon; New York: 1999. p.311-365 - 2a
Woodward RB. Angew. Chem. 1957, 69: 50Reference Ris Wihthout Link - 2b
Celmer WD. Pure Appl. Chem. 1971, 28: 413Reference Ris Wihthout Link - 2c
Omura S.Nakagawa A. J. Antibiot. 1975, 28: 401Reference Ris Wihthout Link - 3a
Martin JR.DeVault RL.Sinclair AC.Stanaszek RS.Johnson P. J. Antibiot. 1982, 35: 426Reference Ris Wihthout Link - 3b
Cevallos A.Guerriero A. J. Antibiot. 2003, 56: 280Reference Ris Wihthout Link - 4a
Hamill RH.Haney ME.Stamper MC.Wiley PF. Antibiot. Chemother. 1961, 11: 328Reference Ris Wihthout Link - 4b
Achenbach H.Regel W.Karl W. Chem. Ber. 1975, 108: 2481Reference Ris Wihthout Link - 5a
Grundy WE.Goldstein AW.Rickher C.Hanes ME.Warren HB.Sylvester JC. Antimicrob. Chemother. 1953, 3: 1215Reference Ris Wihthout Link - 5b
Sensi P.Greco A.Pagani H. Antibiot. Chemother. 1958, 8: 241Reference Ris Wihthout Link - 6a
Paul R.Tchelicheff S. Bull. Soc. Chim. Fr. 1957, 5: 443Reference Ris Wihthout Link - 6b
Paul R.Tchelicheff S. Bull. Soc. Chim. Fr. 1957, 5: 734Reference Ris Wihthout Link - 6c
Paul R.Tchelicheff S. Bull. Soc. Chim. Fr. 1960, 8: 150Reference Ris Wihthout Link - 6d
Omura S.Nakagawa A.Otani M.Hata T.Ogura H.Furuhata K. J. Am. Chem. Soc. 1969, 91: 3401Reference Ris Wihthout Link - 7a
Watanabe T.Nishida H.Satake K. Bull. Chem. Soc. Jpn. 1961, 34: 1285Reference Ris Wihthout Link - 7b
Watanabe T.Fujii T.Satake K. J. Biochem. (Tokyo) 1961, 50: 197Reference Ris Wihthout Link - 7c
Freiberg LA.Egan RS.Washburn WH. J. Org. Chem. 1974, 39: 2474Reference Ris Wihthout Link - 8
Kawata S.Ashizawa S.Hirama M. J. Am. Chem. Soc. 1997, 119: 12012 - 9
Lemal DM.Pacht PD.Woodward RB. Tetrahedron 1962, 18: 1275 - 10a
Flaherty B.Overend WG.Williams NR. J. Chem. Soc. C 1966, 398Reference Ris Wihthout Link - 10b
Howarth GB.Jones JKN. Can. J. Chem. 1967, 45: 2253Reference Ris Wihthout Link - 10c
Koft ER.Dorff P.Kullnig R. J. Org. Chem. 1989, 54: 2936Reference Ris Wihthout Link - 10d
Toshima K.Yoshida T.Mukaiyama S.Tatsuta K. Tetrahedron Lett. 1991, 32: 4139Reference Ris Wihthout Link - 10e
Lear MJ.Hirama M. Tetrahedron Lett. 1999, 40: 4897Reference Ris Wihthout Link - 11
Montgomery SH.Pirrung MC.Heathcock CH. Carbohydr. Res. 1990, 32: 13 - 12a
Jung B.Kang SH. Proc. Natl. Acad. Sci. U. S. A. 2007, 104: 1471Reference Ris Wihthout Link - 12b
Jung B.Hong MS.Kang SH. Angew. Chem. Int. Ed. 2007, 46: 2616Reference Ris Wihthout Link - 13a
Bright GM.Nagel AA.Bordner J.Desai KA.Dibrino JN.Nowakowska J.Vincent L.Watrous RM.Sciavolino FC.English AR.Retsema JA.Anderson MR.Brennan LA.Borovoy RJ.Cimochowski CR.Faiella JA.Girard AE.Girard D.Herbert C.Manousos M.Mason R. J. Antibiot. 1988, 41: 1029Reference Ris Wihthout Link - 13b
Retsema JA.Girard AE.Schelkly W.Manousus M.Anderson MR.Bright GM.Borovoy RJ.Brennan LA.Mason R. Antimicrob. Agents Chemother. 1987, 31: 1939Reference Ris Wihthout Link - 13c
Kirst HA.Sides GD. Antimicrob. Agents Chemother. 1989, 33: 1419Reference Ris Wihthout Link - 14
Hoppe D.Schmincke H.Kleemann H.-W. Tetrahedron 1989, 45: 687 - 16
Tanaka S.Yamamoto H.Nozaki H.Sharpless KB.Michaelson RC.Cutting JD. J. Am. Chem. Soc. 1974, 96: 5254 - 20a
Woodward RB.Logusch E.Nambiar KP.Sakan K.Ward DE.Au-Yeung B.-W.Balaram P.Browne LJ.Card PJ.Chen CH.Chenevert RB.Fliri A.Frobel K.Gais H.-J.Garratt DG.Hayakawa K.Heggie W.Hesson DP.Hoppe D.Hoppe I.Hyatt JA.Ikeda D.Jacobi PA.Kim KS.Kobuke Y.Kojima K.Krowicki K.Lee VJ.Leutert T.Malchenko S.Martens J.Matthews RS.Ong BS.Press JB.Rajan Babu TV.Rousseau G.Sauter HM.Suzuki M.Tatsuta K.Tolbert LM.Truesdale EA.Uchida I.Ueda Y.Uyehara T.Vasella AT.Vladuchick WC.Wade PA.Williams RM.Wong HN.-C. J. Am. Chem. Soc. 1981, 103: 3210Reference Ris Wihthout Link - 20b
Woodward RB.Logusch E.Nambiar KP.Sakan K.Ward DE.Au-Yeung B.-W.Balaram P.Browne LJ.Card PJ.Chen CH.Chenevert RB.Fliri A.Frobel K.Gais H.-J.Garratt DG.Hayakawa K.Heggie W.Hesson DP.Hoppe D.Hoppe I.Hyatt JA.Ikeda D.Jacobi PA.Kim KS.Kobuke Y.Kojima K.Krowicki K.Lee VJ.Leutert T.Malchenko S.Martens J.Matthews RS.Ong BS.Press JB.Rajan Babu TV.Rousseau G.Sauter HM.Suzuki M.Tatsuta K.Tolbert LM.Truesdale EA.Uchida I.Ueda Y.Uyehara T.Vasella AT.Vladuchick WC.Wade PA.Williams RM.Wong HN.-C. J. Am. Chem. Soc. 1981, 103: 3213Reference Ris Wihthout Link - 20c
Woodward RB.Logusch E.Nambiar KP.Sakan K.Ward DE.Au-Yeung B.-W.Balaram P.Browne LJ.Card PJ.Chen CH.Chenevert RB.Fliri A.Frobel K.Gais H.-J.Garratt DG.Hayakawa K.Heggie W.Hesson DP.Hoppe D.Hoppe I.Hyatt JA.Ikeda D.Jacobi PA.Kim KS.Kobuke Y.Kojima K.Krowicki K.Lee VJ.Leutert T.Malchenko S.Martens J.Matthews RS.Ong BS.Press JB.Rajan Babu TV.Rousseau G.Sauter HM.Suzuki M.Tatsuta K.Tolbert LM.Truesdale EA.Uchida I.Ueda Y.Uyehara T.Vasella AT.Vladuchick WC.Wade PA.Williams RM.Wong HN.-C. J. Am. Chem. Soc. 1981, 103: 3215Reference Ris Wihthout Link
References and Notes
Compound 12: ¹H NMR (400 MHz, CDCl3): δ = 1.26 (s, 3 H), 1.64 (br s, 1 H), 1.70 (d, J = 5.2 Hz, 3 H), 2.11-2.48 (m, 2 H), 5.07-5.21 (m, 2 H), 5.59 (d, J = 14.0 Hz, 1 H), 5.71-5.92 (m, 2 H). ¹³C NMR (100 MHz, CDCl3): δ = 17.6, 27.7, 47.2, 71.8, 118.7, 122.9, 133.9, 137.6. HRMS (EI): m/z calcd for C8H14O: 126.1044; found: 126.1041.
17
Synthesis of Epoxide
14
Vanadyl(acetylacetonate) (25 mg, 0.095 mmol) and
t-BuO2H (2.0 M in CH2Cl2,
2.38 mL, 4.76 mmol) were added to diene 12 (400
mg, 3.17 mmol) in CH2Cl2 (3 mL) at 0 ˚C
in sequence. The mixture was stirred at 0 ˚C for 30 min and
then at r.t. for 6 h. After quenching the excess peroxide with 10% aq
Na2S2O3 (10 mL), the following
extraction with EtOAc (3 × 5 mL), drying over MgSO4 (500
mg), filtration and evaporation under reduced pressure gave the
crude product, which was separated by column chromatography (SiO2,
230-400 mesh, EtOAc-hexane, 1:3) to furnish the desired
epoxide (374 mg, 83%) along with the regioisomeric epoxide
(35 mg, 7%). Sodium hydride (60% dispersion in mineral
oil, 126 mg, 3.16 mmol) was added to the disubstituted epoxide (374
mg, 2.63 mmol) in THF (3 mL) at 0 ˚C portionwise. To the
generated alkoxide was injected MeI (0.25 mL, 4.0 mmol), and the
resulting solution was stirred at 0 ˚C for 15 min and then
at r.t. for 3 h. After quenching the methylation with sat. NH4Cl
(3 mL), the workup was done by extraction with EtOAc (3 × 4
mL), drying with MgSO4 (300 mg), filtration and evaporation
in vacuo. The residual material was purified chromato-graphically
(SiO2, 230-400 mesh, EtOAc-hexane,
1:4) to render the epoxy methyl ether 14 (329
mg, 80%).
Compound 14: ¹H
NMR (400 MHz, CDCl3): δ = 1.21
(s, 3 H), 1.33 (d, J = 5.2
Hz, 3 H), 1.91-2.10 (m, 2 H), 2.71 (d, J = 2.3
Hz, 1 H), 3.12 (qd, J = 5.2,
2.3 Hz, 1 H), 3.31 (s, 3 H), 5.10-5.25 (m, 2 H), 5.78-5.94
(m, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 17.3,
25.1, 39.1, 51.5, 52.6, 62.4, 63.5, 118.1, 133.6. HRMS (EI): m/z calcd for C9H16O2:
156.1150; found: 156.1145.
Synthesis of Lactone
15
To epoxide 14 (300mg,
1.92 mmol), dissolved in a mixture of CH2Cl2 (4
mL), MeCN (4 mL), and H2O (6 mL), were added NaIO4 (1.68
g, 7.87 mmol) and RuCl3˙3H2O (16
mg) sequentially at r.t., and the mixture was stirred at that temperature
for 8 h. After addition of CH2Cl2 (50 mL)
to the mixture, the resulting solution was washed with aq HCl (1.0 M,
30 mL) twice and then brine (20 mL) once. The remaining organic
layer was dried over MgSO4 (1 g), filtered and evaporated
in vacuo. The residue was purified by column chromatography (SiO2,
230-400 mesh, EtOAc-hexane, 1:2) to give the corresponding
carboxylic acid (267 mg, 80%). The carboxylic
acid (267 mg, 1.53 mmol) in CH2Cl2 (4 mL)
was stirred in the presence of BF3˙OEt2 (58 µL,
0.46 mmol) at 0 ˚C for 10 min and then at r.t. for 5 h.
After addition of H2O (3 mL), the resulting solution
was extracted with EtOAc (3 × 5 mL), the organic layer
was dried over MgSO4 (400 mg), filtered and evaporated
in vacuo. The residue was separated by column chromatography (SiO2, 230-400
mesh, EtOAc-hexane, 1:2) to afford the lactone 15 (229 mg, 86%).
Compound 15: ¹H NMR (400 MHz,
CDCl3): δ = 1.28
(d, J = 6.3
Hz, 3 H), 1.42 (s, 3 H), 2.52 (d, J = 17.1
Hz, 1 H), 2.66 (d, J = 17.1
Hz, 1 H), 3.24 (s, 3 H), 3.88-3.95 (m, 1 H), 4.06 (d, J = 7.1 Hz,
1 H). ¹³C NMR (100 MHz, CDCl3): δ = 17.6,
20.4, 41.5, 51.1, 66.5, 80.6, 87.9, 174.0. HRMS (EI): m/z calcd for C8H14O4:
174.0892; found: 174.0889.
Synthesis of l -Cladinose (2) Diisobutylaluminum hydride (1.0 M in THF, 2.87 mL, 2.87 mmol) was added to 15 (200 mg, 1.15 mmol) in THF (5 mL) dropwise at -78 ˚C and the resulting mixture was stirred at that temperature for 3 h. The reaction was quenched with a 4:1 mixture of MeOH and H2O at -78 ˚C, and then the temperature was raised to r.t. After addition of sat. NaHCO3 (0.5 mL) and MgSO4 (200 mg) to the mixture, it was filtered using EtOAc (10 mL), and the organic layer was evaporated in vacuo. The remaining residue was purified by column chromatography (SiO2, 230-400 mesh, EtOAc-hexane, 1:1) to deliver l-cladinose (2, 164 mg, 81%).