Subscribe to RSS
DOI: 10.1055/s-2008-1072594
A Novel Method for the High-Pressure-Promoted, Uncatalyzed Aza-Michael Reaction of Nitrogen Heterocycles with Enones in Water [1]
Publication History
Publication Date:
07 May 2008 (online)

Abstract
A new green chemical method for the aza-Michael reaction of nitrogen heterocycles with enones in water as a solvent without the use of any catalysts under high-pressure conditions is described.
Key words
aza-Michael reaction - nitrogen heterocycles - enones - water - high-pressure reaction
- 1 High-Pressure Organic Chemistry, Part 33. For Part 32, see:  
            Kumamoto K.Nakano K.Ichikawa Y.Kotsuki H. Synlett 2006, 1968
- Reviews:
- 2a 
             
            Perlmutter P. Conjugate Addition Reactions in Organic Synthesis Pergamon; New York: 1992. p.114
- 2b 
             
            Liu M.Sibi MP. Tetrahedron 2002, 58: 7991
- 2c 
             
            Vicario JL.Badía D.Carrillo L. Org. Prep. Proced. Int. 2005, 37: 513
- 2d 
             
            Xu L.-W.Xia C.-G. Eur. J. Org. Chem. 2005, 633
- 3a 
             
            Um I.-H.Lee E.-J.Min J.-S. Tetrahedron 2001, 57: 9585
- 3b 
             
            Wabnitz TC.Yu J.-Q.Spencer JB. Chem. Eur. J. 2004, 10: 484
- 4a 
             
            Ahn KH.Lee SJ. Tetrahedron Lett. 1994, 35: 1875
- 4b 
             
            Sibi MP.Shay JJ.Liu M.Jasperse CP. J. Am. Chem. Soc. 1998, 120: 6615
- 4c 
             
            Sibi MP.Liu M. Org. Lett. 2000, 2: 3393
- 4d 
             
            Sibi MP.Liu M. Org. Lett. 2001, 3: 4181
- 4e 
             
            Azizi A.Saidi MR. Tetrahedron 2004, 60: 383
- 5a 
             
            Xu L.-W.Li L.Xia C.-G.Zhou S.-L.Li J.-W.Hu X.-X. Synlett 2003, 2337
- 5b 
             
            Chaudhuri MK.Hussain S.Kantam ML.Neelima B. Tetrahedron Lett. 2005, 46: 8329
- 6 
             
            Gandelman M.Jacobsen EN. Angew. Chem. Int. Ed. 2005, 44: 2393
- 7a 
             
            Falborg L.Jørgensen KA. J. Chem. Soc., Perkin Trans. 1 1996, 2823
- 7b 
             
            Sugihara H.Daikai K.Jin XL.Furuno H.Inanaga J. Tetrahedron Lett. 2002, 43: 2735
- 7c 
             
            Kawatsura M.Aburatani S.Uenishi J. Tetrahedron 2007, 63: 4172
- 8a 
             
            Pérez M.Pleixats R. Tetrahedron 1995, 51: 8355
- 8b 
             
            Xu L.-W.Xia C.-G.Hu XX. Chem. Commun. 2003, 2570
- 8c 
             
            Xu L.-W.Li L.Xia C.-G. Helv. Chim. Acta 2004, 87: 1522
- 9a 
             
            Zhuang W.Hazell RG.Jørgensen KA. Chem. Commun. 2001, 1240
- 9b 
             
            Cardillo G.Gentilucci L.Gianotti M.Kim H.Perciaccante R.Tolomelli A. Tetrahedron: Asymmetry 2001, 12: 2395
- 9c 
             
            Wabnitz TC.Spencer JB. Tetrahedron Lett. 2002, 43: 3891
- 9d 
             
            Xu L.-W.Li J.-W.Xia C.-G.Zhou S.-L.Hu X.-X. Synlett 2003, 2425
- 9e 
             
            Kantam ML.Neeraja V.Kavita B.Neelima B.Chaudhuri MK.Hussain S. Adv. Synth. Catal. 2005, 347: 763
- 9f 
             
            Munro-Leighton C.Blue ED.Gunnoe TB. J. Am. Chem. Soc. 2006, 128: 1446
- 9g 
             
            Reddy KR.Kumar NS. Synlett 2006, 2246
- 10 See ref. 4d and:  
            Nakama K.Seki S.Kanemasa S. Tetrahedron Lett. 2002, 43: 829
- 11 
             
            Yamagiwa N.Qin H.Matsunaga S.Shibasaki M. J. Am. Chem. Soc. 2005, 127: 13419
- 12a 
             
            Firouzabadi H.Iranpoor N.Jafarpour M.Ghaderi A. J. Mol. Catal. A: Chem. 2006, 252: 150
- 12b 
             
            Hashemi MM.Eftekhari-Sis B.Abdollahifar A.Khalili B. Tetrahedron 2006, 62: 672
- 13a 
             
            Gaunt MJ.Spencer JB. Org. Lett. 2001, 3: 25
- 13b 
             
            Kawatsura M.Hartwig JF. Organometallics 2001, 20: 1960
- 13c 
             
            Takasu K.Nishida N.Ihara M. Synlett 2004, 1844
- 13d 
             
            Xu L.-W.Xia C.-G. Synthesis 2004, 2191
- 13e 
             
            Zhang H.Zhang Y.Liu L.Xu H.Wang Y. Synthesis 2005, 2129
- 13f 
             
            Phua PH.Mathew SP.White AJP.de Vries JG.Blackmond DG.Hii KK. Chem. Eur. J. 2007, 13: 4602
- 14a 
             
            Loh T.-P.Wei L.-L. Synlett 1998, 975
- 14b 
             
            Kantam ML.Roy M.Roy S.Subhas MS.Sreedhar B.Choudary BM.Lal De R. J. Mol. Catal. A: Chem. 2007, 265: 244
- 15a 
             
            Matsubara S.Yoshioka M.Utimoto K. Chem. Lett. 1994, 23: 827
- 15b 
             
            Jenner G. Tetrahedron Lett. 1995, 36: 233
- 15c 
             
            Bartoli G.Bosco M.Marcantoni E.Petrini M.Sambri L.Torregiani E. J. Org. Chem. 2001, 66: 9052
- 15d 
             
            Saha B.Das D.Banerji B.Iqbal J. Tetrahedron Lett. 2002, 43: 6467
- 15e 
             
            Bartoli G.Bartolacci M.Giuliani A.Marcantoni E.Massaccesi M.Torregiani E. J. Org. Chem. 2005, 70: 169
- 15f 
             
            Reboule I.Gil R.Collin J. Tetrahedron Lett. 2005, 46: 7761
- 15g 
             
            Varala R.Sreelatha N.Adapa SR. Synlett 2006, 1549
- 16 
             
            Kobayashi S.Kakumoto K.Sugiura M. Org. Lett. 2002, 4: 1319
- 17a 
             
            Varala R.Alam MM.Adapa SR. Synlett 2003, 720
- 17b 
             
            Srivastava N.Banik BK. J. Org. Chem. 2003, 68: 2109
- 18a 
             
            Martín-Aranda RM.Vicente-Rodríguez MA.López-Pestana JM.López-Peinado AJ.Jerez A.López-González J.Banares-Munoz MA. J. Mol. Catal. A: Chem. 1997, 124: 115
- 18b 
             
            Shaikh NS.Deshpande VH.Bedekar AV. Tetrahedron 2001, 57: 9045
- 18c 
             
            Basu B.Das P.Hossain I. Synlett 2004, 2630
- 18d 
             
            Raje VP.Bhat RP.Samant SD. Tetrahedron Lett. 2005, 46: 835
- 18e 
             
            Zahouily M.Bahlaouan W.Bahlaouan B.Rayadh A.Sebti S. ARKIVOC 2005, (xiii): 150
- 18f 
             
            Kantam ML.Neelima B.Reddy ChV. J. Mol. Catal. A: Chem. 2005, 241: 147
- 19a 
             
            Ménand M.Dalla V. Synlett 2005, 95
- 19b 
             
            Yang L.Xu L.-W.Xia C.-G. Tetrahedron Lett. 2005, 46: 3279
- 20a 
             
            Xu L.-W.Xia C.-G. Tetrahedron Lett. 2004, 45: 4507
- 20b 
             
            Khalafi-Nezhad A.Zarea A.Soltani Rad MN.Mokhtari B.Parhami A. Synthesis 2005, 419
- 20c 
             
            Qu G.-R.Zhang Z.-G.Geng M.-W.Xia R.Zhao L.Guo H.-M. Synlett 2007, 721
- 20d 
             
            Yeom C.-E.Kim MJ.Kim BM. Tetrahedron 2007, 63: 904
- 20e 
             
            Han X. Tetrahedron Lett. 2007, 48: 2845
- 20f 
             
            Liu BK.Wu Q.Qian XQ.Lv DS.Lin XF. Synthesis 2007, 2653
- 21a 
             
            Chen YK.Yoshida M.MacMillan DWC. J. Am. Chem. Soc. 2006, 128: 9328
- 21b 
             
            Dinér P.Nielsen M.Marigo M.Jørgensen KA. Angew. Chem. Int. Ed. 2007, 46: 1983
- 21c 
             
            Wang J.Zu L.Li H.Xie H.Wang W. Synthesis 2007, 2576
- 22a 
             
            Goumri-Magnet S.Guerret O.Gornitzka H.Cazaux JB.Bigg D.Palacios F.Bertrand G. J. Org. Chem. 1999, 64: 3741
- 22b 
             
            Fetterly BM.Jana NK.Verkade JG. Tetrahedron 2006, 62: 440
- 22c 
             
            Raje VP.Bhat RP.Samant SD. Synlett 2006, 2676
- 23 
             
            Yao S.-P.Lu D.-S.Wu Q.Cai Y.Xu S.-H.Lin X.-F. Chem. Commun. 2004, 2006 ; and references cited therein
- 24a 
             
            Moghaddam FM.Mohammadi M.Hosseinnia A. Synth. Commun. 2000, 30: 643
- 24b 
             
            Yadav JS.Reddy BVS.Basak AK.Narsaiah AV. Chem. Lett. 2003, 32: 988
- 24c 
             
            Xu L.-W.Li J.-W.Zhou S.-L.Xia C.-G. New J. Chem. 2004, 28: 183
- 24d 
             
            Firouzabadi H.Iranpoor N.Jafari AA. Adv. Synth. Catal. 2005, 347: 655
- 24e 
             
            Jakubec P.Berkes D.Kolarovic A.Povazanec F. Synthesis 2006, 4032
- 24f 
             
            Surendra K.Krishnaveni NS.Sridhar R.Rama Rao K. Tetrahedron Lett. 2006, 47: 2125
- 24g 
             
            Yang L.Xu L.-W.Zhou W.Li L.Xia C.-G. Tetrahedron Lett. 2006, 47: 7723
- 24h 
             
            Amore KM.Leadbeater NE.Miller TA.Schmink JR. Tetrahedron Lett. 2006, 47: 8583
- 24i 
             
            Ranu BC.Banerjee S. Tetrahedron Lett. 2007, 48: 141
- 24j 
             
            Moran J.Dornan P.Beauchemin AM. Org. Lett. 2007, 9: 3893
- 24k 
             
            Polshettiwar V.Varma RS. Tetrahedron Lett. 2007, 48: 8735
- 24l 
             
            de Castries A.Escande A.Fensterbank H.Magnier E.Marrot J.Larpent C. Tetrahedron 2007, 63: 10330
- 25 
             
            Organic Reactions in Water: Principles, Strategies and Applications
              
             
            Lindstroem UM. Blackwell Publishing; Oxford: 2007.Reference Ris Wihthout Link
- There is some controversy regarding organic reactions in or on water, see:
- 26a 
             
            Brogan AP.Dickerson TJ.Janda KD. Angew. Chem. Int. Ed. 2006, 45: 8100
- 26b 
             
            Hayashi Y. Angew. Chem. Int. Ed. 2006, 45: 8103
- 26c 
             
            Blackmond DG.Armstrong A.Coombe V.Wells A. Angew. Chem. Int. Ed. 2007, 46: 3798
- 27 Review:  
            Kotsuki H.Kumamoto K. Yuki Gosei Kagaku Kyokaishi 2005, 63: 770
- For the example of high-pressure-promoted aza-Michael reactions in water, see:
- 28a 
             
            Jenner G. J Phys. Org. Chem. 1999, 12: 619
- See also:
- 28b  
            Ref. 15b. 
- 28c 
             
            Rulev AY.Yenil N.Pesquet A.Oulyadi H.Maddaluno J. Tetrahedron 2006, 62: 5411
- 30 Acetalization of ketones under weakly acidic conditions (1a, pK
            a = 14.75 in DMSO) in the absence of any dehydrating agents is quite unique, and we
            are currently performing experiments to explore the general scope of this reaction.
            See also:  
            Kumamoto K.Ichikawa Y.Kotsuki H. Synlett 2005, 2254
- For recent examples of imidazole-catalyzed Morita-Baylis-Hillman reactions, see:
- 34a 
             
            Luo S.Zhang B.He J.Janczuk A.Wang PG.Cheng J.-P. Tetrahedron Lett. 2002, 43: 7369
- 34b 
             
            Gatri R.El Gaïed MM. Tetrahedron Lett. 2002, 43: 7835
- 34c 
             
            Luo S.Wang PG.Cheng JP. J. Org. Chem. 2004, 69: 555
- 34d 
             
            Luo S.Mi X.Wang PG.Cheng J.-P. Tetrahedron Lett. 2004, 45: 5171
- 34e 
             
            Davies HJ.Ruda AM.Tomkinson NCO. Tetrahedron Lett. 2007, 48: 1461
- 34f  See also:  
            Ramachary DB.Mondal R. Tetrahedron Lett. 2006, 47: 7689
References and Notes
General Procedure A mixture of N-heterocycle (1, 1.1 mmol) and enone (2, 1.0 mmol) in distilled H2O (ca. 3.0 mL) was placed in a Teflon reaction vessel, and the mixture was allowed to react at 0.6 GPa and 60 °C for 20 h. After the mixture was cooled and the pressure was released, the mixture was extracted with CH2Cl2. The extracts were dried, concentrated, and purified by silica gel column chromatography (elution with CH2Cl2-i-PrOH) to afford the pure adduct 3.
31All new compounds gave satisfactory analytical and spectral data.
32The higher reactivity of purine (1g) at the N9 position is well established. For example, see ref. 6.
Compound 3q: mp 123-125 °C (hexane-CH2Cl2). FT-IR (KBr): ν = 1698, 1595, 1576, 1496, 1413 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.85 (1 H, dddd, J = 14.0, 12.0, 5.4, 3.6 Hz), 2.16-2.23 (1 H, m), 2.32-2.39 (1 H, m), 2.48-2.62 (3
         H, m), 2.95 (1 H, ddt, J = 14.1, 4.9, 1.7 Hz), 3.26 (1 H, dd, J = 14.1, 11.7 Hz), 4.89 (1 H, tt, J = 11.5, 4.2 Hz), 8.13 (1 H, s), 8.98 (1 H, s), 9.17 (1 H, s). 13C NMR (100 MHz, CDCl3): δ = 22.0, 30.7, 40.5, 46.9, 54.4, 134.6, 143.2, 149.1, 150.9, 152.4, 206.3.
Compound 3r: mp 143-144 °C (hexane-CH2Cl2). FT-IR (KBr): ν = 1708, 1606, 1559, 1488, 1412 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.83-1.96 (1 H, m), 2.17-2.26 (1 H, m), 2.37 (1 H, ddt, J = 14.6, 11.2, 3.6 Hz), 2.45-2.57 (2 H, m), 2.58-2.66 (1 H, m), 2.96 (1 H, ddd, J = 14.2, 11.0, 1.0 Hz), 3.03 (1 H, ddt, J = 14.2, 5.1, 1.7 Hz), 4.79 (1 H, ddt, J = 10.9, 5.1, 3.9 Hz), 8.33 (1 H, s), 9.04 (1 H, s), 9.18 (1 H, s). 13C NMR (100 MHz, CDCl3): δ = 21.9, 31.3, 40.4, 47.6, 55.7, 124.4, 140.0, 145.5, 153.7, 161.0, 205.3.
Compound 3d: mp 69-70 °C (hexane-CH2Cl2). FT-IR (KBr): ν = 1685, 1596, 1521, 1448 cm-1. 1H NMR (400 MHz, CDCl3): δ = 3.60 (2 H, t, J = 6.4 Hz), 4.65 (2 H, t, J = 6.4 Hz), 7.47 (2 H, m), 7.59 (1 H, tt, J = 7.3, 1.2 Hz), 7.91-7.95 (3 H, m), 8.23 (1 H, s). 13C NMR (100 MHz, CDCl3): δ = 37.9, 44.0, 128.0 (2×), 128.7 (2×), 133.7, 136.0, 144.0, 152.0, 196.5.
Compound 3e: mp 87-89 °C (hexane-CH2Cl2). FT-IR (KBr): ν = 1687, 1538 cm-1. 1H NMR (400 MHz, CDCl3): 
δ = 3.50 (2 H, t, J = 6.1 Hz), 4.55 (2 H, t, J = 6.1 Hz), 7.50 (2 H, t, J = 7.8 Hz), 7.62 (1 H, m), 7.93 (2 H, m), 8.34 (2 H, s). 13C NMR (100 MHz, CDCl3): δ = 39.2, 39.7, 128.0 (2×), 128.9 (2×), 134.2, 135.6, 143.2 (2×), 195.8.
α,β-Unsaturated esters were found to be mostly unreactive as Michael acceptors under the standard conditions (in H2O, 0.6 GPa, 60 °C, 20 h), except for methyl acrylate (87% conversion yield).
 
    