Abstract
Reaction of 2,5-dihydroxycyclohexa-1,4-diene-1,4-dicarboxylates
with one equivalent of N -chlorosuccinimide
cleanly gives 2,5-dihydroxyterephthalates; reaction with four equivalents
of N -chlorosuccinimide gives 2,5-dichloro-1,4-benzoquinone-3,6-dicarboxylates
instead. The latter compounds react with sodium dithionite to give
2,5-dichloro-3,6-dihydroxyterephthalates, which will find use in the
study of polymorphic phase changes.
Key words
arenes - halogenation - hydroquinones - polymorphism - quinones
References <A NAME="RC02208SS-1">1 </A>
Current address: L. Hintermann, Institute
of Organic Chemistry, RWTH, Aachen, Germany.
<A NAME="RC02208SS-2A">2a </A>
Modern Arene Chemistry
Astruc D.
Wiley-VCH;
Weinheim:
2002.
<A NAME="RC02208SS-2B">2b </A>
Hintermann L.
Nachr.
Chem.
2005,
53:
776
<A NAME="RC02208SS-3">3 </A> Succinylsuccinate (or: succinylosuccinate)
is a trivial name for esters of 2,5-dioxocyclohexane-1,4-dicarboxylic
acid (or, in the more stable enol form: 1,4-dihydroxycyclohexa-1,4-diene
dicarboxylic acids), obtained by the condensation of two molecules
of succinic esters, compare:
Nielsen AT.
Carpenter WR.
Org.
Synth. Coll. Vol. V
John Wiley & Sons;
London:
1973.
p.288
With Br2 :
<A NAME="RC02208SS-4A">4a </A>
Herrmann F.
Justus
Liebigs Ann. Chem.
1882,
211:
306
<A NAME="RC02208SS-4B">4b </A>
Bagrov FV.
Bagrov DF.
Russ.
J. Org. Chem.
1994,
30:
637
With MnO2 :
<A NAME="RC02208SS-4C">4c </A>
Padias AB.
Hall HK.
J.
Org. Chem.
1985,
50:
5417
<A NAME="RC02208SS-4D">4d </A>
Itami K.
Palmgren A.
Thorarensen A.
Bäckvall J.-E.
J. Org. Chem.
1998,
63:
6466
<A NAME="RC02208SS-5">5 </A>
Hantzsch A.
Zeckendorf A.
Ber. Dtsch. Chem. Ges.
1887,
20:
1308
<A NAME="RC02208SS-6A">6a </A>
Liebermann H.
Lewin G.
Gruhn A.
Gottesmann E.
Lisser D.
Schonda K.
Justus
Liebigs Ann. Chem.
1934,
513:
156
<A NAME="RC02208SS-6B">6b </A>
Neidlein R.
Throm S.
Arch. Pharm. (Weinheim, Ger.)
1980,
313:
572
<A NAME="RC02208SS-7A">7a </A>
von der Crone J, and
Pugin A. inventors; US 3,130,195.
<A NAME="RC02208SS-7B">7b </A>
Jaffe EE. inventors; US 3,124,582.
Compare:
<A NAME="RC02208SS-7C">7c </A>
Imai M,
Ikuta H,
Akahori H,
Hasegawa K,
Asano M, and
Tsujimoto M. inventors; JP 57185237.
<A NAME="RC02208SS-7D">7d </A>
Altiparmakian R.
Helv.
Chim. Acta
1978,
61:
1146
<A NAME="RC02208SS-8">8 </A>
Hantzsch A.
Ber.
Dtsch. Chem. Ges.
1915,
48:
797
<A NAME="RC02208SS-9A">9a </A>
Curtin DY.
Byrn SR.
J.
Am. Chem. Soc.
1969,
91:
1865
<A NAME="RC02208SS-9B">9b </A>
Curtin DY.
Byrn SR.
J.
Am. Chem. Soc.
1969,
91:
6102
<A NAME="RC02208SS-9C">9c </A>
Swiatkiewicz J.
Prasad PN.
J. Am. Chem. Soc.
1982,
104:
6913
<A NAME="RC02208SS-9D">9d </A>
Strohmeier M.
Orendt AM.
Alderman DW.
Grant DM.
J.
Am. Chem. Soc.
2001,
123:
1713
<A NAME="RC02208SS-10A">10a </A>
Byrn SR.
Curtin DY.
Paul IC.
J. Am. Chem. Soc.
1972,
94:
890
<A NAME="RC02208SS-10B">10b </A>
Yang Q.-C.
Richardson MF.
Dunitz JD.
J. Am. Chem. Soc.
1985,
107:
5535
<A NAME="RC02208SS-10C">10c </A>
Yang Q.-C.
Richardson MF.
Dunitz JD.
Acta Crystallogr., Sect. B.
1989,
45:
312
<A NAME="RC02208SS-10D">10d </A>
Richardson MF.
Yang Q.-C.
Novotny-Bregger E.
Dunitz JD.
Acta
Crystallogr., Sect. B
1990,
46:
653
<A NAME="RC02208SS-11A">11a </A>
Yatsenko AV.
J. Mol. Model.
2003,
9:
207
<A NAME="RC02208SS-11B">11b </A>
Swerts B.
Van Droogenbroeck J.
Peeters A.
Van Alsenoy C.
J. Phys. Chem. A
2002,
106:
4245
<A NAME="RC02208SS-11C">11c </A>
Peeters A.
Lenstra ATH.
Van Doren VE.
Van Alsenoy C.
THEOCHEM
2001,
546:
25
<A NAME="RC02208SS-11D">11d </A>
Peeters A.
Lenstra ATH.
Van Doren VE.
Van Alsenoy C.
THEOCHEM
2001,
546:
17
<A NAME="RC02208SS-11E">11e </A>
Ceolin R.
Toscani S.
Agafonov V.
Dugue J.
J. Solid State Chem.
1992,
98:
366
<A NAME="RC02208SS-12A">12a </A>
Asano M,
Hasegawa K,
Akahori H, and
Tsujimoto M. inventors; EP 55,847.
<A NAME="RC02208SS-12B">12b </A>
Morishima S,
Wariishi K,
Shibata M, and
Ishida T. inventors; EP 820,057.
Thermal transesterification of β-oxo
esters (in the absence of a catalyst) is an old reaction:
<A NAME="RC02208SS-13A">13a </A>
Peters T.
Justus
Liebigs Ann. Chem.
1890,
257:
353
<A NAME="RC02208SS-13B">13b </A>
Cohn P.
Monatsh.
Chem.
1900,
21:
200
<A NAME="RC02208SS-13C">13c </A>
Bader AR.
Cummings LO.
Vogel HA.
J. Am. Chem. Soc.
1951,
73:
4195
<A NAME="RC02208SS-13D">13d </A>
Witzeman JS.
Tetrahedron Lett.
1990,
31:
1401
<A NAME="RC02208SS-14">14 </A>
Sinnreich J.
Batzer H.
Helv. Chim. Acta
1979,
62:
1682
<A NAME="RC02208SS-15A">15a </A>
Taber DF.
Amedio JC.
Patel YK.
J.
Org. Chem.
1985,
50:
3618
<A NAME="RC02208SS-15B">15b </A>
Christoffers J.
Önal N.
Eur. J. Org. Chem.
2000,
1633
<A NAME="RC02208SS-16">16 </A>
Grandmougin E.
J.
Prakt. Chem.
1907,
76:
124
<A NAME="RC02208SS-17">17 </A> This pseudo-polymorphism is analogous
to that described for the bromo analogue of 4b ,
for which X-ray crystal structures of both the solvent-free substance
and a solvate are reported:
Näther C.
Nagel N.
Bock H.
Seitz W.
Havlas Z.
Acta Crystallogr.,
Sect. B.
1996,
52:
697