Klin Monbl Augenheilkd 2008; 225(12): 1009-1023
DOI: 10.1055/s-2008-1027607
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Die Behandlung hereditärer Dystrophien und neovaskulärer Erkrankungen der Retina durch AAV-vermittelten Gentransfer

The Treatment of Inherited Dystrophies and Neovascular Disorders of the Retina by rAAV-Mediated Gene TherapyK. Stieger1 , B. Lorenz1
  • 1Klinik und Poliklinik für Augenheilkunde, Justus-Liebig-Universität Gießen, Universitätsklinikum Gießen und Marburg GmbH, Standort Gießen
Further Information

Publication History

Eingegangen: 31.3.2008

Angenommen: 12.5.2008

Publication Date:
15 December 2008 (online)

Zusammenfassung

In den vergangenen 10 Jahren wurden Strategien entwickelt, um hereditäre Dystrophien und neovaskuläre Erkrankungen der Retina durch den Transfer von Genen zu behandeln. Als optimale Genfähren (Vektoren) haben sich dabei rekombinante adenoassoziierte Viren (rAAV) etabliert. Zur Behandlung retinaler Erkrankungen werden entweder Wildtyp-Kopien der betroffenen Gene (spezifische Gentherapie) oder neuroprotektive bzw. antiangiogene Faktoren (unspezifische Gentherapie) in der Retina exprimiert. Die erfolgreiche Behandlung von RPE65–/–-Hunden (ein natürlich auftretendes Modell für bei Menschen auftretende Netzhautdystrophien) durch spezifische Gentherapie wurde von verschiedenen Forschungsgruppen in den USA und Europa gezeigt und basierend auf diesen Studien wurden mehrere klinische Studien vorbereitet und begonnen. Um die Möglichkeit von unerwünschten Nebeneffekten durch die Gentherapie in der Retina zu minimieren, muss die Expression von neuroprotektiven bzw. antiangiogenen Faktoren regulierbar sein. Mehrere Regulationssysteme wurden schon erfolgreich in der Retina von Großtiermodellen getestet und könnten demnächst in der Klinik Anwendung finden.

Abstract

Over the last decade, significant progress has been made in the development of gene therapy strategies for the treatment of neovascular disorders and inherited dystrophies of the retina. Of all tested viral vectors, recombinant adeno-associated virus (rAAV) vectors, have been shown to be optimal vectors for gene transfer to the retina. Broadly speaking, two gene therapy strategies are used to treat retinal diseases; the first being corrective expression in the retina of the mutated gene (i. e., specific gene therapy) and the second being therapeutic expression of, for example, neurotrophic or antiangiogenic factors, in cases of neurodegenerative or neovascular, respectively, disorders (non-specific gene therapy). The naturally occurring RPE65–/– Briard dog model has been successfully treated by specific gene transfer protocols and, based on these studies, the first clinical phase I trials are in preparation or have already begun. To avoid potential negative side effects due to the expression of neurotrophic and/or antiangiogenic factors in the retina, the expression of these transgenes needs to be regulated into a therapeutic window. Several regulatory systems have been tested in the retina of large animal models and may soon be used in clinical applications.

Literatur

  • 1 Doonan F, Donovan M, Cotter T G. Caspase-independent photoreceptor apoptosis in mouse models of retinal degeneration.  J Neurosci. 2003;  23 (13) 5723-5731
  • 2 Marigo V. Programmed cell death in retinal degeneration: targeting apoptosis in photoreceptors as potential therapy for retinal degeneration.  Cell Cycle. 2007;  6 (6) 652-655
  • 3 Wenzel A, Grimm C, Samardzija M. et al . Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration.  Prog Retin Eye Res. 2005;  24 (2) 275-306
  • 4 Holz F G, Pauleikhoff D, Klein R. et al . Pathogenesis of lesions in late age-related macular disease.  Am J Ophthalmol. 2004;  137 (3) 504-510
  • 5 Frank R N. Diabetic retinopathy.  N Engl J Med. 2004;  350 (1) 48-58
  • 6 Hartong D T, Berson E L, Dryja T P. Retinitis pigmentosa.  Lancet. 2006;  368 (9549) 1795-1809
  • 7 Rolling F. Recombinant AAV-mediated gene transfer to the retina: gene therapy perspectives.  Gene Ther. 2004;  11 Suppl 1 S26-32
  • 8 Auricchio A, Rolling F. Adeno-associated viral vectors for retinal gene transfer and treatment of retinal diseases.  Curr Gene Ther. 2005;  5 (3) 339-348
  • 9 Warrington K H, Herzog R W. Treatment of human disease by adeno-associated viral gene transfer.  Hum Genet. 2006;  119 (6) 571-603
  • 10 Atchison R W, Casto B C, Hammon W M. Adenovirus-Associated Defective Virus Particles.  Science. 1965;  149 754-756
  • 11 Srivastava Jr A, Lusby E W, Berns K I. Nucleotide sequence and organization of the adeno-associated virus 2 genome.  J Virol. 1983;  45 (2) 555-564
  • 12 Flotte T R. Gene therapy progress and prospects: recombinant adeno-associated virus (rAAV) vectors.  Gene Ther. 2004;  11 (10) 805-810
  • 13 Gao G, Vandenberghe L H, Alvira M R. et al . Clades of Adeno-associated viruses are widely disseminated in human tissues.  J Virol. 2004;  78 (12) 6381-6388
  • 14 Mori S, Wang L, Takeuchi T. et al . Two novel adeno-associated viruses from cynomolgus monkey: pseudotyping characterization of capsid protein.  Virology. 2004;  330 (2) 375-383
  • 15 Schmidt M, Grot E, Cervenka P. et al . Identification and characterization of novel adeno-associated virus isolates in ATCC virus stocks.  J Virol. 2006;  80 (10) 5082-5085
  • 16 Samulski R J, Chang L S, Shenk T. A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication.  J Virol. 1987;  61 (10) 3096-3101
  • 17 Muzyczka N. Use of adeno-associated virus as a general transduction vector for mammalian cells.  Curr Top Microbiol Immunol. 1992;  158 97-129
  • 18 Rabinowitz J E, Rolling F, Li C. et al . Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity.  J Virol. 2002;  76 (2) 791-801
  • 19 Dudus L, Anand V, Acland G M. et al . Persistent transgene product in retina, optic nerve and brain after intraocular injection of rAAV.  Vision Res. 1999;  39 (15) 2545-2553
  • 20 Guy J, Qi X, Muzyczka N. et al . Reporter expression persists 1 year after adeno-associated virus-mediated gene transfer to the optic nerve.  Arch Ophthalmol. 1999;  117 (7) 929-937
  • 21 Folliot S, Briot D, Conrath H. et al . Sustained tetracycline-regulated transgene expression in vivo in rat retinal ganglion cells using a single type 2 adeno-associated viral vector.  J Gene Med. 2003;  5 (6) 493-501
  • 22 Auricchio A, Kobinger G, Anand V. et al . Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model.  Hum Mol Genet. 2001;  10 (26) 3075-3081
  • 23 Bennett J, Maguire A M, Cideciyan A V. et al . Stable transgene expression in rod photoreceptors after recombinant adeno-associated virus-mediated gene transfer to monkey retina.  Proc Natl Acad Sci U S A. 1999;  96 (17) 9920-9925
  • 24 Le Meur G, Weber M, Pereon Y. et al . Postsurgical assessment and long-term safety of recombinant adeno-associated virus-mediated gene transfer into the retinas of dogs and primates.  Arch Ophthalmol. 2005;  123 (4) 500-506
  • 25 Ali R R, Reichel M B, Thrasher A J. et al . Gene transfer into the mouse retina mediated by an adeno-associated viral vector.  Hum Mol Genet. 1996;  5 (5) 591-594
  • 26 Yang G S, Schmidt M, Yan Z. et al . Virus-mediated transduction of murine retina with adeno-associated virus: effects of viral capsid and genome size.  J Virol. 2002;  76 (15) 7651-7660
  • 27 Bainbridge J W, Mistry A, Schlichtenbrede F C. et al . Stable rAAV-mediated transduction of rod and cone photoreceptors in the canine retina.  Gene Ther. 2003;  10 (16) 1336-1344
  • 28 Weber M, Rabinowitz J, Provost N. et al . Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery.  Mol Ther. 2003;  7 (6) 774-781
  • 29 Lotery A J, Yang G S, Mullins R F. et al . Adeno-associated virus type 5: transduction efficiency and cell-type specificity in the primate retina.  Hum Gene Ther. 2003;  14 (17) 1663-1671
  • 30 Natkunarajah M, Trittibach P, McIntosh J. et al . Assessment of ocular transduction using single-stranded and self-complementary recombinant adeno-associated virus serotype 2 / 8.  Gene Ther. 2008;  15 (6) 463-467
  • 31 Allocca M, Mussolino C, Garcia-Hoyos M. et al . Novel adeno-associated virus serotypes efficiently transduce murine photoreceptors.  J Virol. 2007;  81 (20) 11 372-11 380
  • 32 Stieger K, Colle M A, Dubreil L. et al . Subretinal delivery of recombinant AAV serotype 8 vector in dogs results in gene transfer to neurons in the brain.  Mol Ther. 2008;  15 epub March 11th
  • 33 Bennett J, Duan D, Engelhardt J F. et al . Real-time, noninvasive in vivo assessment of adeno-associated virus-mediated retinal transduction.  Invest Ophthalmol Vis Sci. 1997;  38 (13) 2857-2863
  • 34 Narfstrom K, Katz M L, Ford M. et al . In vivo gene therapy in young and adult RPE65-/- dogs produces long-term visual improvement.  J Hered. 2003;  94 (1) 31-37
  • 35 Acland G M, Aguirre G D, Ray J. et al . Gene therapy restores vision in a canine model of childhood blindness.  Nat Genet. 2001;  28 (1) 92-95
  • 36 Nicoletti A, Kawase K, Thompson D A. Promoter analysis of RPE65, the gene encoding a 61-kDa retinal pigment epithelium-specific protein.  Invest Ophthalmol Vis Sci. 1998;  39 (3) 637-644
  • 37 Esumi N, Oshima Y, Li Y. et al . Analysis of the VMD2 promoter and implication of E-box binding factors in its regulation.  J Biol Chem. 2004;  279 (18) 19 064-19 073
  • 38 Lem J, Applebury M L, Falk J D. et al . Tissue-specific and developmental regulation of rod opsin chimeric genes in transgenic mice.  Neuron. 1991;  6 (2) 201-210
  • 39 Zack D J, Bennett J, Wang Y. et al . Unusual topography of bovine rhodopsin promoter-lacZ fusion gene expression in transgenic mouse retinas.  Neuron. 1991;  6 (2) 187-199
  • 40 Bennett J, Sun D, Kariko K. Sequence analysis of the 5.34-kb 5’ flanking region of the human rhodopsin-encoding gene.  Gene. 1995;  167 (1 – 2) 317-320
  • 41 Chen J, Tucker C L, Woodford B. et al . The human blue opsin promoter directs transgene expression in short-wave cones and bipolar cells in the mouse retina.  Proc Natl Acad Sci U S A. 1994;  91 (7) 2611-2615
  • 42 Fei Y. Development of the cone photoreceptor mosaic in the mouse retina revealed by fluorescent cones in transgenic mice.  Mol Vis. 2003;  9 31-42
  • 43 Young J E, Vogt T, Gross K W. et al . A short, highly active photoreceptor-specific enhancer/promoter region upstream of the human rhodopsin kinase gene.  Invest Ophthalmol Vis Sci. 2003;  44 (9) 4076-4085
  • 44 Kuzmanovic M, Dudley V J, Sarthy V P. GFAP promoter drives Muller cell-specific expression in transgenic mice.  Invest Ophthalmol Vis Sci. 2003;  44 (8) 3606-3613
  • 45 Jomary C, Vincent K A, Grist J. et al . Rescue of photoreceptor function by AAV-mediated gene transfer in a mouse model of inherited retinal degeneration.  Gene Ther. 1997;  4 (7) 683-690
  • 46 Ali R R, Sarra G M, Stephens C. et al . Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy.  Nat Genet. 2000;  25 (3) 306-310
  • 47 Schlichtenbrede F C, da Cruz L, Stephens C. et al . Long-term evaluation of retinal function in Prph2Rd2 /Rd2 mice following AAV-mediated gene replacement therapy.  J Gene Med. 2003;  5 (9) 757-764
  • 48 Schlichtenbrede F C, Smith A J, Bainbridge J W. et al . Improvement of neuronal visual responses in the superior colliculus in Prph2 (Rd2 /Rd2) mice following gene therapy.  Mol Cell Neurosci. 2004;  25 (1) 103-110
  • 49 Sarra G M, Stephens C, Alwis de M. et al . Gene replacement therapy in the retinal degeneration slow (rds) mouse: the effect on retinal degeneration following partial transduction of the retina.  Hum Mol Genet. 2001;  10 (21) 2353-2361
  • 50 Pawlyk B S, Smith A J, Buch P K. et al . Gene replacement therapy rescues photoreceptor degeneration in a murine model of Leber congenital amaurosis lacking RPGRIInvest.  Ophthalmol Vis Sci. 2005;  46 (9) 3039-3045
  • 51 Haire S E, Pang J, Boye S L. et al . Light-driven cone arrestin translocation in cones of postnatal guanylate cyclase-1 knockout mouse retina treated with AAV-GC1.  Invest Ophthalmol Vis Sci. 2006;  47 (9) 3745-3753
  • 52 Zeng Y, Takada Y, Kjellstrom S. et al . RS-1 Gene Delivery to an Adult Rs1h Knockout Mouse Model Restores ERG b-Wave with Reversal of the Electronegative Waveform of X-Linked Retinoschisis.  Invest Ophthalmol Vis Sci. 2004;  45 (9) 3279-3285
  • 53 Min S H, Molday L L, Seeliger M W. et al . Prolonged recovery of retinal structure/function after gene therapy in an Rs1h-deficient mouse model of x-linked juvenile retinoschisis.  Mol Ther. 2005;  12 (4) 644-651
  • 54 Kjellstrom S, Bush R A, Zeng Y. et al . Retinoschisin gene therapy and natural history in the Rs1h-KO mouse: long-term rescue from retinal degeneration.  Invest Ophthalmol Vis Sci. 2007;  48 (8) 3837-3845
  • 55 Alexander J J, Umino Y, Everhart D. et al . Restoration of cone vision in a mouse model of achromatopsia.  Nat Med. 2007;  13 (6) 685-687
  • 56 Batten M L, Imanishi Y, Tu D C. et al . Pharmacological and rAAV gene therapy rescue of visual functions in a blind mouse model of Leber congenital amaurosis.  PLoS Med. 2005;  2 (11) e333
  • 57 Smith A J, Schlichtenbrede F C, Tschernutter M. et al . AAV-Mediated gene transfer slows photoreceptor loss in the RCS rat model of retinitis pigmentosa.  Mol Ther. 2003;  8 (2) 188-195
  • 58 Narfstrom K, Katz M L, Bragadottir R. et al . Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog.  Invest Ophthalmol Vis Sci. 2003;  44 (4) 1663-1672
  • 59 Dejneka N S, Surace E M, Aleman T S. et al . In utero gene therapy rescues vision in a murine model of congenital blindness.  Mol Ther. 2004;  9 (2) 182-188
  • 60 Lai C M, Yu M J, Brankov M. et al . Recombinant adeno-associated virus type 2-mediated gene delivery into the Rpe65-/- knockout mouse eye results in limited rescue.  Genet Vaccines Ther. 2004;  2 (1) 3
  • 61 Acland G M, Aguirre G D, Bennett J. et al . Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness.  Mol Ther. 2005;  12 (6) 1072-1082
  • 62 Pang J J, Chang B, Kumar A. et al . Gene therapy restores vision-dependent behavior as well as retinal structure and function in a mouse model of RPE65 Leber congenital amaurosis.  Mol Ther. 2006;  13 (3) 565-572
  • 63 Le Meur G, Stieger K, Smith A J. et al . Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium.  Gene Ther. 2007;  14 (4) 292-303
  • 64 Bennicelli J, Wright J F, Komaromy A. et al . Reversal of Blindness in Animal Models of Leber Congenital Amaurosis Using Optimized AAV2-mediated Gene Transfer.  Mol Ther. 2008;  22 22
  • 65 Surace E M, Domenici L, Cortese K. et al . Amelioration of both functional and morphological abnormalities in the retina of a mouse model of ocular albinism following AAV-mediated gene transfer.  Mol Ther. 2005;  12 (4) 652-658
  • 66 Moiseyev G, Chen Y, Takahashi Y. et al . RPE65 is the isomerohydrolase in the retinoid visual cycle.  Proc Natl Acad Sci U S A. 2005;  102 (35) 12 413-12 418
  • 67 Jin M, Li S, Moghrabi W N. et al . Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium.  Cell. 2005;  122 (3) 449-459
  • 68 Redmond T M, Yu S, Lee E. et al . Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle.  Nat Genet. 1998;  20 (4) 344-351
  • 69 Pang J J, Chang B, Hawes N L. et al . Retinal degeneration 12 (rd12): a new, spontaneously arising mouse model for human Leber congenital amaurosis (LCA).  Mol Vis. 2005;  11 152-162
  • 70 Aguirre G D, Baldwin V, Pearce-Kelling S. et al . Congenital stationary night blindness in the dog: common mutation in the RPE65 gene indicates founder effect.  Mol Vis. 1998;  4 23
  • 71 Jacobson S G, Acland G M, Aguirre G D. et al . Safety of recombinant adeno-associated virus type 2-RPE65 vector delivered by ocular subretinal injection.  Mol Ther. 2006;  13 (6) 1074-1084
  • 72 Jacobson S G, Boye S L, Aleman T S. et al . Safety in nonhuman primates of ocular AAV2-RPE65, a candidate treatment for blindness in Leber congenital amaurosis.  Hum Gene Ther. 2006;  17 (8) 845-858
  • 73 Dryja T P, Hahn L B, Cowley G S. et al . Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa.  Proc Natl Acad Sci U S A. 1991;  88 (20) 9370-9374
  • 74 Lewin A S, Drenser K A, Hauswirth W W. et al . Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa.  Nat Med. 1998;  4 (8) 967-971
  • 75 LaVail M M, Yasumura D, Matthes M T. et al . Ribozyme rescue of photoreceptor cells in P 23 H transgenic rats: long-term survival and late-stage therapy.  Proc Natl Acad Sci U S A. 2000;  97 (21) 11 488-11 493
  • 76 Tessitore A, Parisi F, Denti M A. et al . Preferential silencing of a common dominant rhodopsin mutation does not inhibit retinal degeneration in a transgenic model.  Mol Ther. 2006;  14 (5) 692-699
  • 77 Gorbatyuk M S, Pang J J, Thomas J. et al . Knockdown of wild-type mouse rhodopsin using an AAV vectored ribozyme as part of an RNA replacement approach.  Mol Vis. 2005;  11 648-656
  • 78 Gorbatyuk M, Justilien V, Liu J. et al . Preservation of photoreceptor morphology and function in P 23 H rats using an allele independent ribozyme.  Exp Eye Res. 2007;  84 (1) 44-52
  • 79 Gorbatyuk M, Justilien V, Liu J. et al . Suppression of mouse rhodopsin expression in vivo by AAV mediated siRNA delivery.  Vision Res. 2007;  47 (9) 1202-1208
  • 80 O’Reilly M, Millington-Ward S, Palfi A. et al . A transgenic mouse model for gene therapy of rhodopsin-linked Retinitis Pigmentosa.  Vision Res. 2007;  5 5
  • 81 O’Reilly M, Palfi A, Chadderton N. et al . RNA interference-mediated suppression and replacement of human rhodopsin in vivo.  Am J Hum Genet. 2007;  81 (1) 127-135
  • 82 Huang E J, Reichardt L F. Trk receptors: roles in neuronal signal transduction.  Annu Rev Biochem. 2003;  72 609-642
  • 83 Datta S R, Brunet A, Greenberg M E. Cellular survival: a play in three Akts.  Genes Dev. 1999;  13 (22) 2905-2927
  • 84 Lau D, McGee L H, Zhou S. et al . Retinal degeneration is slowed in transgenic rats by AAV-mediated delivery of FGF-2.  Invest Ophthalmol Vis Sci. 2000;  41 (11) 3622-3633
  • 85 Green E S, Rendahl K G, Zhou S. et al . Two animal models of retinal degeneration are rescued by recombinant adeno-associated virus-mediated production of FGF-5 and FGF-18.  Mol Ther. 2001;  3 (4) 507-515
  • 86 McGee Sanftner L H, Abel H, Hauswirth W W. et al . Glial cell line derived neurotrophic factor delays photoreceptor degeneration in a transgenic rat model of retinitis pigmentosa.  Mol Ther. 2001;  4 (6) 622-629
  • 87 Buch P K, MacLaren R E, Duran Y. et al . In contrast to AAV-mediated Cntf expression, AAV-mediated Gdnf expression enhances gene replacement therapy in rodent models of retinal degeneration.  Mol Ther. 2006;  14 (5) 700-709
  • 88 Allocca M, Di Vicino U, Petrillo M. et al . Constitutive and AP 20 187-induced Ret activation in photoreceptors does not protect from light-induced damage.  Invest Ophthalmol Vis Sci. 2007;  48 (11) 5199-5206
  • 89 Peterson W M, Wang Q, Tzekova R. et al . Ciliary neurotrophic factor and stress stimuli activate the Jak-STAT pathway in retinal neurons and glia.  J Neurosci. 2000;  20 (11) 4081-4090
  • 90 Beltran W A, Zhang Q, Kijas J W. et al . Cloning, mapping, and retinal expression of the canine ciliary neurotrophic factor receptor alpha (CNTFRalpha).  Invest Ophthalmol Vis Sci. 2003;  44 (8) 3642-3649
  • 91 Liang F Q, Dejneka N S, Cohen D R. et al . AAV-mediated delivery of ciliary neurotrophic factor prolongs photoreceptor survival in the rhodopsin knockout mouse.  Mol Ther. 2001;  3 (2) 241-248
  • 92 Liang F Q, Aleman T S, Dejneka N S. et al . Long-term protection of retinal structure but not function using RAAV.CNTF in animal models of retinitis pigmentosa.  Mol Ther. 2001;  4 (5) 461-472
  • 93 Bok D, Yasumura D, Matthes M T. et al . Effects of adeno-associated virus-vectored ciliary neurotrophic factor on retinal structure and function in mice with a P 216L rds/peripherin mutation.  Exp Eye Res. 2002;  74 (6) 719-735
  • 94 Schlichtenbrede F C, MacNeil A, Bainbridge J W. et al . Intraocular gene delivery of ciliary neurotrophic factor results in significant loss of retinal function in normal mice and in the Prph2Rd2 /Rd2 model of retinal degeneration.  Gene Ther. 2003;  10 (6) 523-527
  • 95 Wen R, Song Y, Kjellstrom S. et al . Regulation of rod phototransduction machinery by ciliary neurotrophic factor.  J Neurosci. 2006;  26 (52) 13 523-13 530
  • 96 Rhee K D, Ruiz A, Duncan J L. et al . Molecular and cellular alterations induced by sustained expression of ciliary neurotrophic factor in a mouse model of retinitis pigmentosa.  Invest Ophthalmol Vis Sci. 2007;  48 (3) 1389-1400
  • 97 Grimm C, Wenzel A, Groszer M. et al . HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration.  Nat Med. 2002;  8 (7) 718-724
  • 98 Grimm C, Wenzel A, Stanescu D. et al . Constitutive overexpression of human erythropoietin protects the mouse retina against induced but not inherited retinal degeneration.  J Neurosci. 2004;  24 (25) 5651-5658
  • 99 Grimm C, Hermann D M, Bogdanova A. et al . Neuroprotection by hypoxic preconditioning: HIF-1 and erythropoietin protect from retinal degeneration.  Semin Cell Dev Biol. 2005;  16 (4 – 5) 531-538
  • 100 Grimm C, Wenzel A, Acar N. et al . Hypoxic preconditioning and erythropoietin protect retinal neurons from degeneration.  Adv Exp Med Biol. 2006;  588 119-131
  • 101 Rex T S, Allocca M, Domenici L. et al . Systemic but not intraocular Epo gene transfer protects the retina from light-and genetic-induced degeneration.  Mol Ther. 2004;  10 (5) 855-861
  • 102 Sun M H, Pang J H, Chen S L. et al . Photoreceptor protection against light damage by AAV-mediated overexpression of heme oxygenase-1.  Invest Ophthalmol Vis Sci. 2007;  48 (12) 5699-5707
  • 103 LaCasse E C, Baird S, Korneluk R G. et al . The inhibitors of apoptosis (IAPs) and their emerging role in cancer.  Oncogene. 1998;  17 (25) 3247-3259
  • 104 Deveraux Q L, Leo E, Stennicke H R. et al . Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases.  Embo J. 1999;  18 (19) 5242-5251
  • 105 Leonard K C, Petrin D, Coupland S G. et al . XIAP Protection of Photoreceptors in Animal Models of Retinitis Pigmentosa.  PLoS ONE. 2007;  2 e314
  • 106 Tomita H, Sugano E, Yawo H. et al . Restoration of visual response in aged dystrophic RCS rats using AAV-mediated channelopsin-2 gene transfer.  Invest Ophthalmol Vis Sci. 2007;  48 (8) 3821-3826
  • 107 Bi A, Cui J, Ma Y P. et al . Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration.  Neuron. 2006;  50 (1) 23-33
  • 108 Ng E W, Shima D T, Calias P. et al . Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease.  Nat Rev Drug Discov. 2006;  5 (2) 123-132
  • 109 Brown D M, Kaiser P K, Michels M. et al . Ranibizumab versus verteporfin for neovascular age-related macular degeneration.  N Engl J Med. 2006;  355 (14) 1432-1444
  • 110 Bashshur Z F, Bazarbachi A, Schakal A. et al . Intravitreal bevacizumab for the management of choroidal neovascularization in age-related macular degeneration.  Am J Ophthalmol. 2006;  142 (1) 1-9
  • 111 Ferrara N, Kerbel R S. Angiogenesis as a therapeutic target.  Nature. 2005;  438 (7070) 967-974
  • 112 Jager R D, Aiello L P, Patel S C. et al . Risks of intravitreous injection: a comprehensive review.  Retina. 2004;  24 (5) 676-698
  • 113 Ryan S J. Subretinal neovascularization. Natural history of an experimental model.  Arch Ophthalmol. 1982;  100 (11) 1804-1809
  • 114 Mori K, Gehlbach P, Yamamoto S. et al . AAV-mediated gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization.  Invest Ophthalmol Vis Sci. 2002;  43 (6) 1994-2000
  • 115 Lai C C, Wu W C, Chen S L. et al . Suppression of choroidal neovascularization by adeno-associated virus vector expressing angiostatin.  Invest Ophthalmol Vis Sci. 2001;  42 (10) 2401-2407
  • 116 Lai Y K, Shen W Y, Brankov M. et al . Potential long-term inhibition of ocular neovascularisation by recombinant adeno-associated virus-mediated secretion gene therapy.  Gene Ther. 2002;  9 (12) 804-813
  • 117 Lai C M, Shen W Y, Brankov M. et al . Long-term evaluation of AAV-mediated sFlt-1 gene therapy for ocular neovascularization in mice and monkeys.  Mol Ther. 2005;  12 (4) 659-668
  • 118 Smith L E, Wesolowski E, McLellan A. et al . Oxygen-induced retinopathy in the mouse.  Invest Ophthalmol Vis Sci. 1994;  35 (1) 101-111
  • 119 Okamoto N, Tobe T, Hackett S F. et al . Transgenic mice with increased expression of vascular endothelial growth factor in the retina: a new model of intraretinal and subretinal neovascularization.  Am J Pathol. 1997;  151 (1) 281-291
  • 120 Lai C M, Dunlop S A, May L A. et al . Generation of transgenic mice with mild and severe retinal neovascularisation.  Br J Ophthalmol. 2005;  89 (7) 911-916
  • 121 Ruberte J, Ayuso E, Navarro M. et al . Increased ocular levels of IGF-1 in transgenic mice lead to diabetes-like eye disease.  J Clin Invest. 2004;  113 (8) 1149-1157
  • 122 Yamada H, Yamada E, Higuchi A. et al . Retinal neovascularisation without ischaemia in the spontaneously diabetic Torii rat.  Diabetologia. 2005;  48 (8) 1663-1668
  • 123 Raisler B J, Berns K I, Grant M B. et al . Adeno-associated virus type-2 expression of pigmented epithelium-derived factor or Kringles 1 – 3 of angiostatin reduce retinal neovascularization.  Proc Natl Acad Sci U S A. 2002;  99 (13) 8909-8914
  • 124 Auricchio A, Behling K C, Maguire A M. et al . Inhibition of retinal neovascularization by intraocular viral-mediated delivery of anti-angiogenic agents.  Mol Ther. 2002;  6 (4) 490-494
  • 125 Deng W T, Yan Z, Dinculescu A. et al . Adeno-associated virus-mediated expression of vascular endothelial growth factor peptides inhibits retinal neovascularization in a mouse model of oxygen-induced retinopathy.  Hum Gene Ther. 2005;  16 (11) 1247-1254
  • 126 Bainbridge J W, Mistry A, De Alwis M. et al . Inhibition of retinal neovascularisation by gene transfer of soluble VEGF receptor sFlt-1.  Gene Ther. 2002;  9 (5) 320-326
  • 127 Ideno J, Mizukami H, Kakehashi A. et al . Prevention of diabetic retinopathy by intraocular soluble flt-1 gene transfer in a spontaneously diabetic rat model.  Int J Mol Med. 2007;  19 (1) 75-79
  • 128 Alon T, Hemo I, Itin A. et al . Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity.  Nat Med. 1995;  1 (10) 1024-1028
  • 129 Oosthuyse B, Moons L, Storkebaum E. et al . Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration.  Nat Genet. 2001;  28 (2) 131-138
  • 130 Baffert F, Le T, Sennino B. et al . Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling.  Am J Physiol Heart Circ Physiol. 2006;  290 (2) H547-559
  • 131 Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters.  Proc Natl Acad Sci USA. 1992;  89 (12) 5547-5551
  • 132 Rivera V M, Clackson T, Natesan S. et al . A humanized system for pharmacologic control of gene expression.  Nat Med. 1996;  2 (9) 1028-1032
  • 133 Boast K, Binley K, Iqball S. et al . Characterization of physiologically regulated vectors for the treatment of ischemic disease.  Hum Gene Ther. 1999;  10 (13) 2197-2208
  • 134 Gossen M, Freundlieb S, Bender G. et al . Transcriptional activation by tetracyclines in mammalian cells.  Science. 1995;  268 (5218) 1766-1769
  • 135 McGee Sanftner L H, Rendahl K G, Quiroz D. et al . Recombinant AAV-mediated delivery of a tet-inducible reporter gene to the rat retina.  Mol Ther. 2001;  3 (5 Pt 1) 688-696
  • 136 Smith J R, Verwaerde C, Rolling F. et al . Tetracycline-inducible viral interleukin-10 intraocular gene transfer, using adeno-associated virus in experimental autoimmune uveoretinitis.  Hum Gene Ther. 2005;  16 (9) 1037-1046
  • 137 Stieger K, Le Meur G, Lasne F. et al . Long-term doxycycline-regulated transgene expression in the retina of nonhuman primates following subretinal injection of recombinant AAV vectors.  Mol Ther. 2006;  13 (5) 967-975
  • 138 Stieger K, Mendes-Madeira A, Meur G L. et al . Oral administration of doxycycline allows tight control of transgene expression: a key step towards gene therapy of retinal diseases.  Gene Ther. 2007;  14 (23) 1668-1673
  • 139 Le Guiner C, Stieger K, Snyder R O. et al . Immune responses to gene product of inducible promoters.  Curr Gene Ther. 2007;  7 (5) 334-346
  • 140 Auricchio A, Rivera V M, Clackson T. et al . Pharmacological regulation of protein expression from adeno-associated viral vectors in the eye.  Mol Ther. 2002;  6 (2) 238-242
  • 141 Lebherz C, Auricchio A, Maguire A M. et al . Long-term inducible gene expression in the eye via adeno-associated virus gene transfer in nonhuman primates.  Hum Gene Ther. 2005;  16 (2) 178-186
  • 142 Rivera V M, Gao G P, Grant R L. et al . Long-term pharmacologically regulated expression of erythropoietin in primates following AAV-mediated gene transfer.  Blood. 2005;  105 (4) 1424-1430
  • 143 Bainbridge J W, Mistry A, Binley K. et al . Hypoxia-regulated transgene expression in experimental retinal and choroidal neovascularization.  Gene Ther. 2003;  10 (12) 1049-1054
  • 144 MacLaren R E, Pearson R A, MacNeil A. et al . Retinal repair by transplantation of photoreceptor precursors.  Nature. 2006;  444 (7116) 203-207
  • 145 Andrieu-Soler C, Halhal M, Boatright J H. et al . Single-stranded oligonucleotide-mediated in vivo gene repair in the rd1 retina.  Mol Vis. 2007;  13 692-706

Dr. Knut Stieger

Klinik und Poliklinik für Augenheilkunde, Justus-Liebig-Universität Gießen

Friedrichstr. 18

35385 Gießen

Phone: ++ 49/6 41/9 94 38 35

Fax: ++ 49/6 41/99 4 39 99

Email: knut.stieger@uniklinikum-giessen.de

    >