RSS-Feed abonnieren
DOI: 10.1055/s-2008-1027600
© Georg Thieme Verlag KG Stuttgart · New York
Oxidativer Stress am retinalen Pigmentepithel – experimentelle Ansätze zur Protektion
Oxidative Stress at the Retinal Pigment Epithelium – Experimental Implications for ProtectionPublikationsverlauf
Eingegangen: 31.3.2008
Angenommen: 15.5.2008
Publikationsdatum:
27. Januar 2009 (online)

Zusammenfassung
Oxidativer Stress am retinalen Pigmentepithel (RPE) ist ursächlich an der Entstehung der altersbedingten Makuladegeneration (AMD) beteiligt. Ein Oxidationsschutz des RPE durch Supplementation von Antioxidantien ist sowohl auf klinischer als auch auf experimenteller Ebene komplex. Ein mögliches therapeutisches Target ist die durch oxidativen Stress angestoßene zelluläre Signaltransduktion, an deren Ende z. B. eine veränderte Expression von vasoaktiven Signalmolekülen oder die Induktion von Apoptose steht. Die Übersichtsarbeit fasst den Stand der Literatur zu zellulären Effekten freier Radikale zusammen und leitet daraus mögliche Ansätze zur therapeutischen Protektion des RPE ab.
Abstract
Oxidative stress at the retinal pigment epithelium (RPE) is involved in the pathophysiology of age-related macula degeneration (ARMD). Observations on a clinical or laboratory level have revealed that supplementation of antioxidative scavengers failed in many cases. A potential therapeutic target is the cellular signal transduction cascade initiated by oxidative stress which results, e. g., in altered expression of pro- and antiagiogenic factors as well as induction of apoptosis. This review summarises the current literature on cellular effects of free radicals and deduces potential therapeutic approaches to protect the RPE from oxidative damage.
Schlüsselwörter
Retina - Pharmakologie - Pathologie
Key words
Retina - Pharmacology - Pathology
Literatur
- 1
Congdon N, O’Colmain B, Klaver C C. et al .
Causes and prevalence of visual impairment among adults in the United States.
Arch Ophthalmol.
2004;
122
477-485
MissingFormLabel
- 2
Knauer C, Pfeiffer N.
Erblindung in Deutschland – heute und 2030.
Ophthalmologe.
2006;
103
735-741
MissingFormLabel
- 3
Pauleikhoff D, Holz F G.
Altersbedingte Makuladegeneration: 1. Epidemiologie, Pathogenese und klinische Differzierung.
Ophthalmologe.
1996;
93
299-315
MissingFormLabel
- 4
Edwards A O, Ritter 3 rd R, Abel K J. et al .
Complement factor H polymorphism and age-related macular degeneration.
Science.
2005;
308
421-424
MissingFormLabel
- 5
Haines J L, Hauser M A, Schmidt S. et al .
Complement factor H variant increases the risk of age-related macular degeneration.
Science.
2005;
308
419-421
MissingFormLabel
- 6
Klein R J, Zeiss C, Chew E Y. et al .
Complement factor H polymorphism in age-related macular degeneration.
Science.
2005;
308
385-389
MissingFormLabel
- 7
Hageman G S, Anderson D H, Johnson L V. et al .
A common haplotype in the complement regulatory gene factor H (HF1 /CFH) predisposes
individuals to age-related macular degeneration.
Proc Natl Acad Sci U S A.
2005;
102
7227-7232
MissingFormLabel
- 8
Shuler R K, Hauser M A, Caldwell Jr J. et al .
Neovascular age-related macular degeneration and its association with LOC387715 and
complement factor H polymorphism.
Arch Ophthalmol.
2007;
125
63-67
MissingFormLabel
- 9
Dewan A, Liu M, Hartman S. et al .
HTRA1 promoter polymorphism in wet age-related macular degeneration.
Science.
2006;
314
989-992
MissingFormLabel
- 10
Luibl V, Isas J M, Kayed R. et al .
Drusen deposits associated with aging and age-related macular degeneration contain
nonfibrillar amyloid oligomers.
J Clin Invest.
2006;
116
378-385
MissingFormLabel
- 11
Strauss O.
The retinal pigment epithelium in visual function.
Physiol Rev.
2005;
85
845-881
MissingFormLabel
- 12
Bhutto I A, McLeod D S, Hasegawa T. et al .
Pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF)
in aged human choroid and eyes with age-related macular degeneration.
Exp Eye Res.
2006;
82
99-110
MissingFormLabel
- 13
Hollyfield J G, Bonilha V L, Rayborn M E. et al .
Oxidative damage-induced inflammation initiates age-related macular degeneration.
Nat Med.
2008;
14
194-198
MissingFormLabel
- 14
Beatty S, Koh H, Phil M. et al .
The role of oxidative stress in the pathogenesis of age-related macular degeneration.
Surv Ophthalmol.
2000;
45
115-134
MissingFormLabel
- 15
Pauleikhoff D, Kuijk F J, Bird A C.
Makuläres Pigment und altesabhängige Makuladegeneration.
Ophthalmologe.
2001;
98
511-519
MissingFormLabel
- 16
Rozanowska van M, Jarvis-Evans J, Korytowski W. et al .
Blue light-induced reactivity of retinal age pigment. In vitro generation of oxygen-reactive
species.
J Biol Chem.
1995;
270
18 825-18 830
MissingFormLabel
- 17
Seagle B L, Rezai K A, Kobori Y. et al .
Melanin photoprotection in the human retinal pigment epithelium and its correlation
with light-induced cell apoptosis.
Proc Natl Acad Sci U S A.
2005;
102
8978-8983
MissingFormLabel
- 18
Sparrow J R, Zhou J, Ben-Shabat S. et al .
Involvement of oxidative mechanisms in blue-light-induced damage to A 2E-laden RPE.
Invest Ophthalmol Vis Sci.
2002;
43
1222-1227
MissingFormLabel
- 19
Sundelin S P, Nilsson S E, Brunk U T.
Lipofuscin-formation in cultured retinal pigment epithelial cells is related to their
melanin content.
Free Radic Biol Med.
2001;
30
74-81
MissingFormLabel
- 20
Beatty S, Koh H, Phil M. et al .
The role of oxidative stress in the pathogenesis of age-related macular degeneration.
Surv Ophthalmol.
2000;
45
115-134
MissingFormLabel
- 21
Schutt F, Davies S, Kopitz J. et al .
Photodamage to human RPE cells by A 2-E, a retinoid component of lipofuscin.
Invest Ophthalmol Vis Sci.
2000;
41
2303-2308
MissingFormLabel
- 22
Rozanowska M, Wessels J, Boulton M. et al .
Blue light-induced singlet oxygen generation by retinal lipofuscin in non-polar media.
Free Radic Biol Med.
1998;
24
1107-1112
MissingFormLabel
- 23
Schutt F, Bergmann M, Holz F G. et al .
Isolation of intact lysosomes from human RPE cells and effects of A 2-E on the integrity
of the lysosomal and other cellular membranes.
Graefes Arch Clin Exp Ophthalmol.
2002;
240
983-988
MissingFormLabel
- 24
Suter M, Reme C, Grimm C. et al .
Age-related macular degeneration. The lipofusion component N-retinyl-N-retinylidene
ethanolamine detaches proapoptotic proteins from mitochondria and induces apoptosis
in mammalian retinal pigment epithelial cells.
J Biol Chem.
2000;
275
39 625-39 630
MissingFormLabel
- 25
Tomita M, Yamada H, Adachi Y. et al .
Choroidal neovascularization is provided by bone marrow cells.
Stem Cells.
2004;
22
21-26
MissingFormLabel
- 26
Kannan R, Zhang N, Sreekumar P G. et al .
Stimulation of apical and basolateral VEGF-A and VEGF-C secretion by oxidative stress
in polarized retinal pigment epithelial cells.
Mol Vis.
2006;
12
1649-1659
MissingFormLabel
- 27
Ohno-Matsui K, Morita I, Tombran-Tink J. et al .
Novel mechanism for age-related macular degeneration: an equilibrium shift between
the angiogenesis factors VEGF and PEDF.
J Cell Physiol.
2001;
189
323-333
MissingFormLabel
- 28
Li X, Liu Z, Luo C. et al .
Lipoamide protects retinal pigment epithelial cells from oxidative stress and mitochondrial
dysfunction.
Free Radic Biol Med.
2008;
44
1465-1474
MissingFormLabel
- 29
Shamsi F A, Chaudhry I A, Boulton M E. et al .
L-carnitine protects human retinal pigment epithelial cells from oxidative damage.
Curr Eye Res.
2007;
32
575-584
MissingFormLabel
- 30
Hanneken A, Lin F F, Johnson J. et al .
Flavonoids protect human retinal pigment epithelial cells from oxidative-stress-induced
death.
Invest Ophthalmol Vis Sci.
2006;
47
3164-3177
MissingFormLabel
- 31
Liang F Q, Green L, Wang C. et al .
Melatonin protects human retinal pigment epithelial (RPE) cells against oxidative
stress.
Exp Eye Res.
2004;
78
1069-1075
MissingFormLabel
- 32
Zeitz O, Schlichting L, Richard G. et al .
Lack of antioxidative properties of vitamin C and pyruvate in cultured retinal pigment
epithelial cells.
Graefes Arch Clin Exp Ophthalmol.
2007;
245
276-281
MissingFormLabel
- 33
Chen Q, Espey M G, Krishna M C. et al .
Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as
a pro-drug to deliver hydrogen peroxide to tissues.
Proc Natl Acad Sci U S A.
2005;
102
13 604-13 609
MissingFormLabel
- 34
AREDS_investigator_group .
A randomized, placebo-controlled, clinical trial of high-dose supplementation with
vitamins C and E, beta carotene, and zinc for age-related macular degeneration and
vision loss: AREDS report no. 8.
Arch Ophthalmol.
2001;
119
1417-1436
MissingFormLabel
- 35
Cadenas E.
Biochemistry of oxygen toxicity.
Annu Rev Biochem.
1989;
58
79-110
MissingFormLabel
- 36
Xu K Y, Zweier J L, Becker L C.
Hydroxyl radical inhibits sarcoplasmic reticulum Ca(2 +)-ATPase function by direct
attack on the ATP binding site.
Circ Res.
1997;
80
76-81
MissingFormLabel
- 37
Zeitz O, Maass A E, Van Nguyen P. et al .
Hydroxyl radical-induced acute diastolic dysfunction is due to calcium overload via
reverse-mode Na(+)-Ca(2 +) exchange.
Circ Res.
2002;
90
988-995
MissingFormLabel
- 38
Schlichting L, Strauss O, Zeitz O.
Influence of Hydroxyl Radicals on the Ca2 +-Metabolism of the Retinal Pigment Epithelium.
Invest Ophthalmol Vis Sci.
2005;
46
E-Abstract 3040
MissingFormLabel
- 39
Mukherjee P K, Marcheselli V L, Barreiro S. et al .
Neurotrophins enhance retinal pigment epithelial cell survival through neuroprotectin
D 1 signaling.
Proc Natl Acad Sci U S A.
2007;
104
13 152-13 157
MissingFormLabel
- 40
Mukherjee P K, Marcheselli V L, Serhan C N. et al .
Neuroprotectin D 1: a docosahexaenoic acid-derived docosatriene protects human retinal
pigment epithelial cells from oxidative stress.
Proc Natl Acad Sci U S A.
2004;
101
8491-8496
MissingFormLabel
- 41
Marti H H.
Erythropoietin and the hypoxic brain.
J Exp Biol.
2004;
207
3233-3242
MissingFormLabel
- 42
Smith K J, Bleyer A J, Little W C. et al .
The cardiovascular effects of erythropoietin.
Cardiovasc Res.
2003;
59
538-548
MissingFormLabel
- 43
Masuda S, Kobayashi T, Chikuma M. et al .
The oviduct produces erythropoietin in an estrogen- and oxygen-dependent manner.
Am J Physiol Endocrinol Metab.
2000;
278
E1038-1044
MissingFormLabel
- 44
Junk A K, Mammis A, Savitz S I. et al .
Erythropoietin administration protects retinal neurons from acute ischemia-reperfusion
injury.
Proc Natl Acad Sci U S A.
2002;
99
10 659-10 664
MissingFormLabel
- 45
Weishaupt J H, Rohde G, Polking E. et al .
Effect of erythropoietin axotomy-induced apoptosis in rat retinal ganglion cells.
Invest Ophthalmol Vis Sci.
2004;
45
1514-1522
MissingFormLabel
- 46
Gassmann M, Heinicke K, Soliz J. et al .
Non-erythroid functions of erythropoietin.
Adv Exp Med Biol.
2003;
543
323-330
MissingFormLabel
- 47
Ehrenreich H, Aust C, Krampe H. et al .
Erythropoietin: novel approaches to neuroprotection in human brain disease.
Metab Brain Dis.
2004;
19
195-206
MissingFormLabel
- 48
Ehrenreich H, Hasselblatt M, Dembowski C. et al .
Erythropoietin therapy for acute stroke is both safe and beneficial.
Mol Med.
2002;
8
495-505
MissingFormLabel
- 49
Ehrenreich H, Hinze-Selch D, Stawicki S. et al .
Improvement of cognitive functions in chronic schizophrenic patients by recombinant
human erythropoietin.
Mol Psychiatry.
2007;
12
206-220
MissingFormLabel
- 50
Grimm C, Wenzel A, Groszer M. et al .
HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced
retinal degeneration.
Nat Med.
2002;
8
718-724
MissingFormLabel
- 51
Zeitz O, Gawad A, Schlichting L. et al .
Oxidative Stress Induces Apoptosis in Cultured ARPE-19 Cells – Protective Effect of
Erythropoietin.
Invest Ophthalmol Vis Sci.
2007;
48
MissingFormLabel
- 52
Jaquet K, Krause K, Tawakol-Khodai M. et al .
Erythropoietin and VEGF exhibit equal angiogenic potential.
Microvasc Res.
2002;
64
326-333
MissingFormLabel
- 53
Watanabe D, Suzuma K, Matsui S. et al .
Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy.
N Engl J Med.
2005;
353
782-792
MissingFormLabel
- 54
Hernandez C, Fonollosa A, Garcia-Ramirez M. et al .
Erythropoietin is expressed in the human retina and it is highly elevated in the vitreous
fluid of patients with diabetic macular edema.
Diabetes Care.
2006;
29
2028-2033
MissingFormLabel
- 55
Jonas J B, Neumaier M.
Erythropoietin levels in aqueous humour in eyes with exudative age-related macular
degeneration and diabetic retinopathy.
Clin Experiment Ophthalmol.
2007;
35
186-187
MissingFormLabel
PD Dr. Oliver Zeitz
Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Hamburg-Eppendorf
Martinistr. 52
20246 Hamburg
Telefon: ++ 49/40/4 28 03 33 14
Fax: ++ 49/40/4 28 03 88 84
eMail: zeitz@uke.uni-hamburg.de