RSS-Feed abonnieren
DOI: 10.1055/s-2008-1027513
© Georg Thieme Verlag KG Stuttgart · New York
In-vitro-Untersuchungen zum Wirkungsmechanismus von VEGF und seinen Inhibitoren
In Vitro Studies on the Mechanism of Action of VEGF and its InhibitorsPublikationsverlauf
Eingegangen: 22.4.2008
Angenommen: 6.5.2008
Publikationsdatum:
18. Juli 2008 (online)

Zusammenfassung
Die Expression des Wachstumsfaktors VEGF und die durch ihn aktivierbaren Signaltransduktionswege sind bei der diabetischen Retinopathie dereguliert. Durch VEGF stimulierte Proliferation und Migration von Endothelzellen sowie die durch diesen Wachstumsfaktor erhöhte Permeabilität der Endothelzellen ist vorwiegend Folge seiner Bindung an den für diesen Liganden spezifischen VEGF-Rezeptor 2. Für die durch VEGF165 induzierte Störung der Blut-Retina-Schranke ist unter Umständen die Delokalisation von Proteinen, die an der Bildung der „tight-junctions” in retinalen Endothelzellen beteiligt sind, verantwortlich. VEGF-Inhibitoren wie das VEGF-Aptamer (modifiziertes RNA-Oligonukleotid; Pegaptanib) oder spezifische Antikörper bzw. abgeleitete Fab-Fragmente (Bevacizumab, Ranibizumab), die die Interaktion von VEGF mit seinem Rezeptor beeinflussen, gelten daher als vielversprechende neue Therapeutika zur Behandlung der diabetischen Retinopathie und der altersabhängigen Makuladegeneration. In-vitro-Studien mit retinalen Endothelzellen können auch für die therapeutische Anwendung wertvolle Hinweise auf die Mechanismen der Wirkung von VEGF und seinen Inhibitoren liefern: Dabei untersucht man unter anderem den Einfluss verschiedener VEGF-Isoformen, ggf. in Kombination mit VEGF-Inhibitoren, auf Proliferation und Migration mikrovaskulärer Endothelzellen retinalen Ursprungs, sowie die Veränderung von tight-junctions nach Einwirkung von VEGF165 und geeigneten Inhibitoren. Die in diesem Artikel neben einer Literaturübersicht enthaltenen Primärdaten stammen größtenteils aus eigenen Untersuchungen.
Abstract
VEGF expresssion and signalling are deregulated in diabetic retinopathy. Cellular processes like migration and proliferation as well as control of the permeability of the endothelium by VEGF are regulated as a consequence of its binding to the VEGF receptor 2. Proteins forming tight junctions between microvascular endothelial cells of the retina are delocated to the cytoplasm after treatment with VEGF165, likely leading to the breakdown of the blood-retina barrier. VEGF-inhibitors such as a VEGF-aptamer (modified RNA-oligonucleotide; pegaptanib) or specific antibodies/antibody fragments (bevacizumab, ranibzumab) which directly interfere with the interaction of VEGF with its receptors are considered to be promising novel therapeutics to treat diabetic retinopathy and age-related macular degeneration. In vitro studies using microvascular endothelial cells will help to clarify the mechanisms of action of VEGF and its inhibitors. In particular, the influence of VEGF isoforms and the inhibitor ranibizumab on the proliferation and migration of bovine retinal microvascular endothelial cells was studied, as well as the rearrangement of tight-junction proteins after treatment of the cells with VEGF165 and specific inhibitors. In addition to a review of recent publications in the field, primary data from our own studies are presented in this article.
Schlüsselwörter
diabetische Retinopathie - retinale mikrovaskuläre Endothelzellen - VEGF - VEGF-Inhibitoren
Key words
diabetic retinopathy - retinal microvascular endothelial cells - VEGF - VEGF inhibitors
Literatur
- 1
Aiello L P, Avery R L, Arrigg P G. et al .
Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy
and other retinal disorders.
NEJM.
1994;
331
1480-1487
MissingFormLabel
- 2
Antonetti D A, Barber A J, Hollinger L A. et al .
Vascular endothelial growth factor induces rapid phosphorylation of tight junction
proteins occludin and zonula occludens 1.
J Biol Chem.
1999;
274
23 463-23 467
MissingFormLabel
- 3
Bazzoni G.
Endothelial tight junctions: permeable barriers of the vessel wall.
Thromb Haemost.
2006;
95
36-42
MissingFormLabel
- 4
Behzadian M A, Windsor L J, Ghaly N. et al .
VEGF-induced paracellular permeability in cultured endothelial cells involves urokinase
and its receptor.
FASEB J.
2003;
17
752-754
MissingFormLabel
- 5
Boulton M, Foreman D, Williams G. et al .
VEGF localisation in diabetic retinopathy.
Br J Ophthalmol.
1998;
82
561-568
MissingFormLabel
- 6
Caldwell R B, Bartoli M, Behzadian M A. et al .
Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms
and treatment perspectives.
Diabetes Metab Res Rev.
2003;
19
442-455
MissingFormLabel
- 7
Caldwell R B, Bartoli M, Behzadian M A. et al .
Vascular endothelial growth factor and diabetic retinopathy: role of oxidative stress.
Curr Drug Targets.
2005;
6
511-524
MissingFormLabel
- 8
Deissler H, Deissler H, Lang G K. et al .
Generation and characterization of iBREC: novel hTERT-immortalized bovine retinal
endothelial cells.
Int J Mol Med.
2005;
16
65-70
MissingFormLabel
- 9
Deissler H, Deissler H, Lang G K. et al .
TGFβ induces transdifferentiation of iBREC to &alphaSMA-expressing cells.
Int J Mol Med.
2006;
18
577-582
MissingFormLabel
- 10
Deissler H, Deissler H, Lang S. et al .
VEGF-induced effects on proliferation, migration and tight junctions are restored
by ranibizumab (Lucentis®) in microvascular retinal endothelial cells.
Br J Ophthalmol.
2008;
im Druck
MissingFormLabel
- 11
Ferrara N.
Vascular endothelial growth factor: basic science and clinical progress.
Endocr Rev.
2004;
25
581-611
MissingFormLabel
- 12
Ferrara N, Damico L, Shams N. et al .
Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding
fragment, as therapy for neovascular age-related macular degeneration.
Retina.
2006;
26
859-870
MissingFormLabel
- 13
Hammes H -P, Lin J, Renner O. et al .
Pericytes and the pathogenesis of diabetic retinopathy.
Diabetes.
2002;
51
3107-3112
MissingFormLabel
- 14
Harhaj N S, Felinski E A, Wolpert E B. et al .
VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes
to endothelial permeability.
Invest Ophthalmol Vis Sci.
2006;
47
5106-5115
MissingFormLabel
- 15
Hughes J M, Brink A, Witmer A M. et al .
Vascular leucocyte adhesion molecules unaltered in the human retina in diabetes.
Br J Ophthalmol.
2004;
88
566-572
MissingFormLabel
- 16
Joussen A M, Poulaki V, Le M L. et al .
A central role for inflammation in the pathogenesis of diabetic retinopathy.
FASEB J.
2004;
18
1450-1452
MissingFormLabel
- 17
Kowanetz M, Ferrara N.
Vascular endothelial growth factor signaling pathways: therapeutic perspective.
Clin Cancer Res.
2006;
12
5018-5022
MissingFormLabel
- 18
Lowe J, Araujo J, Yang J. et al .
Ranibizumab inhibits multiple forms of biologically active vascular endothelial growth
factor in vitro and in vivo.
Exp Eye Res.
2007;
85
425-430
MissingFormLabel
- 19
Lutty G A, Mathews M K, Merges C. et al .
Adenosine stimulates canine retinal microvascular endothelial cell migration and tube
formation.
Curr Eye Res.
1998;
17
594-607
MissingFormLabel
- 20
Malik R A, Li C, Aziz W. et al .
Elevated plasma CD 105 and vitreous VEGF levels in diabetic retinopathy.
J Cell Mol Med.
2005;
9
692-697
MissingFormLabel
- 21
McLeod D S, Lefer D J, Merges C. et al .
Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic
human retina and choroid.
Am J Pathol.
1995;
147
642-653
MissingFormLabel
- 22
Pan Q, Chathery Y, Wu Y. et al .
Neuropilin-1 binds to VEGF121 and regulates endothelial cell migration and sprouting.
J Biol Chem.
2007;
282
24 049-24 056
MissingFormLabel
- 23
Peters S, Julien S, Heiduschka P. et al .
Antipermeability and antiproliferative effects of standard and frozen bevacizumab
on choroidal endothelial cells.
Br J Ophthalmol.
2007;
91
827-831
MissingFormLabel
- 24
Qaum T, Xu Q, Joussen A M. et al .
VEGF-initiated blood-retinal barrier breakdown in early diabetes.
Invest Ophthalmol Vis Sci.
2001;
42
2408-2413
MissingFormLabel
- 25
Raja T T, Grammas P.
VEGF and VEGF receptor levels in retinal and brain-derived endlthelial cells.
Bioch Biophys Res Commun.
2002;
293
710-713
MissingFormLabel
- 26
Sakakibara A, Furuse M, Saitou M. et al .
Possible involvement of phosphorylation of occludin in tight junction formation.
J Cell Biol.
1997;
137
1393-1401
MissingFormLabel
- 27
Spitzer M S, Wallenfels-Thilo B, Sierra A. et al .
Antiproliferative and cytotoxic properties of bevacizumab on different ocular cells.
Br J Ophthalmol.
2006;
90
1316-1321
MissingFormLabel
- 28
Spitzer M S, Yoeruek E, Sierra A. et al .
Comparative antiproliferative and cytotoxic profile of bevacizumab (Avastin), pegaptanib
(Macugen) and ranibizumab (Lucentis) on different ocular cells.
Graefes Arch Clin Exp Ophthalmol.
2007;
245
1837-1842
MissingFormLabel
- 29
Suzuma K, Takagi H, Otani A. et al .
Hypoxia and vascular endothelial growth factor stimulate angiogenic integrin expression
in bovine retinal microvascular endothelial cells.
Invest Ophthalmol Vis Sci.
1998;
39
1028-1035
MissingFormLabel
- 30
Tsukita S, Furuse M, Itoh M.
Multifunctional strands in tight junctions.
Nat Rev Mol Cell Biol.
2001;
2
285-293
MissingFormLabel
- 31
Vinores S A.
Technology evaluation: pegaptanib, Eyetech/Pfizer.
Curr Opin Mol Ther.
2003;
5
673-679
MissingFormLabel
- 32
Watanabe D, Suzuma K, Suzuma I. et al .
Vitreous levels of angiopoietin 2 and vascular endothelial growth factor in patients
with proliferative diabetic retinopathy.
Am J Ophthalmol.
2005;
139
476-481
MissingFormLabel
- 33
Witmer A N, Blaauwgeers H G, Weich H A. et al .
Altered expression patterns of VEGF receptors in human diabetic retina and in experimental
VEGF induced retinopathy in monkey.
Invest Ophthalmol Vis Sci.
2002;
43
849-857
MissingFormLabel
- 34
Wong V.
Phosphorylation of occludin correlates with occludin localization and funciton at
the tight junction.
Am J Physiol.
1997;
273
C1859-1867
MissingFormLabel
Dr. Heidrun L. Deissler
Augenklinik, Universitätsklinikum Ulm
Prittwitzstraße 43
89075 Ulm
Telefon: ++ 49/7 31/50 05 91 55
Fax: ++ 49/7 31/50 04 29 60
eMail: heidrun.deissler@uniklinik-ulm.de