Subscribe to RSS
DOI: 10.1055/s-2008-1027221
© Georg Thieme Verlag KG Stuttgart · New York
Biophysikalische Grundlagen der Kollagenvernetzung
Biophysical Principles of Collagen Cross-LinkingPublication History
Eingegangen: 7.9.2007
Angenommen: 15.1.2008
Publication Date:
22 February 2008 (online)

Zusammenfassung
Hintergrund: Die verringerte mechanische Stabilität der Hornhaut beim Keratokonus oder bei der iatrogenen Keratektasie nach Lasik kann durch photooxidative Vernetzung des Kollagens kompensiert werden. Für die sichere und effektive Anwendung dieser neuen Therapiemethode sollen die biophysikalischen Grundlagen zusammengestellt werden. Methode: Die Wahl der Therapieparameter soll anhand der Absorptionsverhältnisse in der Hornhaut erläutert werden. Die Sicherheit der Methode wird für das Endothel und für die Linse diskutiert. Die erzeugten Vernetzungen werden indirekt am Beispiel der dadurch veränderten physikochemischen Eigenschaften der Hornhaut aufgezeigt. Ergebnisse: Um eine hohe Absorption der Strahlungsenergie in der Hornhaut zu erreichen, wurden Riboflavin mit einer Konzentration von 0,1 % und UV-Licht der Wellenlänge von 370 nm entsprechend dem relativen Maximum der Absorption von Riboflavin gewählt. Eine Bestrahlungsstärke von 3 mW/cm2 und eine Bestrahlungszeit von 30 min führen zu einer signifikanten Verfestigung. Durch die hohe Absorption innerhalb der Hornhaut wird das Endothel geschützt, d. h., bei einer Stromadicke größer 400 µm wird die Schädigungsschwelle des Endothels nicht erreicht. Als Nachweis der Vernetzungen gelten die Erhöhung der mechanischen Festigkeit, die Erhöhung der Resistenz gegen enzymatische Abbauprozesse, die geringere Quellungsneigung, eine erhöhte Schrumpfungstemperatur und ein vergrößerter Durchmesser der Kollagenfasern. Schlussfolgerung: Die Therapieparameter wurden experimentell getestet und haben sich klinisch bei der Kollagenvernetzung bewährt. Zum Erreichen eines sicheren Vernetzungseffektes ohne Schädigung umgebender Gewebe sollten diese Parameter eingehalten werden.
Abstract
Background: The reduced mechanical stability of the cornea in keratoconus or in keratectasia after Lasik may be increased by photooxidative cross-linking of corneal collagen. The biophysical principles are compiled for the safe and effective application of this new treatment method. Methods: The setting of the therapy parameters should be elucidated from the absorption behaviour of the cornea. The safety of the method for the endothelium cells and the lense will be discussed. The induced cross-links are shown to be the result of changes in the physico-chemical properties of the cornea. Results: To reach a high absorption of the irradiation energy in the cornea, riboflavin of a concentration of 0.1 % and UV light of a wavelength of 370 nm, corresponding to the relative maximum of absorption of riboflavin, were used. An irradiance of 3 mW/cm2 and an irradiation time of 30 min lead to an increase of the mechanical stiffness. The endothelium cells will be protected due to the high absorption within the cornea, that means the damaging threshold of the endothelium cells will not be reached in a 400 µm thick stroma. As evidence for cross-links we can consider the increase of the biomechanical stiffness, the increased resistance against enzymatic degradation, a higher shrinkage temperature, a lower swelling rate and an increased diameter of collagen fibres. Conclusions: The therapy parameters were tested experimentally and have been proven clincally in the corneal collagen cross-linking. These parameters should be respected to reach a safe cross-linking effect without damage of the adjacent tissues.
Schlüsselwörter
Kornea - Keratokonus - Biomechanik - Vernetzung - ultraviolette Strahlung - Riboflavin
Key words
cornea - keratoconus - biomechanics - cross-linking - ultraviolet irradiation - riboflavin
Literatur
- 1
Aeschlimann D, Paulsson M.
Cross-linking of laminin-nidogen complexes by tissue transglutaminase.
J Biol Chem.
1991;
266
15 308-15 317
Reference Ris Wihthout Link
- 2
Ahearne M, Yang Y, Then K Y. et al .
Non-destructive mechanical characterization of UVA/riboflavin crosslinked collagen
hydrogels.
Br J Ophthalmol.
2008 (im Druck);
Reference Ris Wihthout Link
- 3
Asaga H, Kikuchi S, Yoshizato K.
Collagen gel contraction by fibroblasts requires cellular fibronectin but not plasma
fibronectin.
Exp Cell Res.
1991;
193
167-174
Reference Ris Wihthout Link
- 4
Ayala M N, Michael R, Söderberg P G.
Influence of exposure time for UV radiation induced cataract.
Invest Ophthalmol Vis Sci.
2000;
41
3539-3543
Reference Ris Wihthout Link
- 5
Andreassen T T, Simonsen A H, Oxlund H.
Biomechanical properties of keratoconus and normal corneas.
Exp Eye Res.
1980;
31
435-441
Reference Ris Wihthout Link
- 6
Balasubramanian D, Kanwar R.
Molecular pathology of dityrosine cross-links in proteins: structural and functional
analysis of four proteins.
Mol Cell Biochmistry.
2002;
234 / 235
27-38
Reference Ris Wihthout Link
- 7
Cannon J.
Collagen crosslinking in keratoconus.
Invest Ophthalmol Vis Sci.
1978;
17
63-65
Reference Ris Wihthout Link
- 8
Chan B P, So K F.
Photochemical crosslinking improves the physicochemical properties of collagen scaffolds.
J Biomedical Material Res A.
2005;
75
689-701
Reference Ris Wihthout Link
- 9
Chen R N, Ho H O, Sheu M T.
Characterization of collagen matrices crosslinked using microbial transglutaminase.
Biomaterials.
2005;
26
4229-4235
Reference Ris Wihthout Link
- 10
Doillon C J, Watsky M A, Hakim M. et al .
A collagen-based scaffold for a tissue engineered human cornea: physical and physiological
properties.
Int J Artifical Organs.
2003;
26
764-773
Reference Ris Wihthout Link
- 11
Dong X, Söderberg P, Ayaly M. et al .
The effect of exposure time on maximum acceptable dose for avoidance of ultraviolet
radiation-induced cataract.
Ophthalmic Res.
2005;
37
197-201
Reference Ris Wihthout Link
- 12
Ehlers N, Hjortdal J Ä, Funding M. et al .
Modification of properties of corneal stroma by molecular cross-linking.
Ophthalmic Res.
2003;
35
S17
Reference Ris Wihthout Link
- 13
Ehlers N, Hjortdal J.
Riboflavin-ultraviolet light induced cross-linking in endothelial decompensation.
Acta Ophthalmologica Scandinavica.
2008 (in Druck);
Reference Ris Wihthout Link
- 14
Elsheikh A, Wang D, Brown M. et al .
Assessment of corneal biomechanical properties and their variation with age.
Curr Eye Res.
2007;
32
11-19
Reference Ris Wihthout Link
- 15 Elstner E F. Der Sauerstoff. Biochemie, Biologie, Medizin. Mannheim, Leipzig, Wien, Zürich; BI-Wiss.-Verlag 1990: 40, 288
Reference Ris Wihthout Link
- 16
Guidry C, Grinnell F.
Contraction of hydrated collagen gels by fibroblasts: evidence for two mechanisms
by which collagen fibrils are stabilized.
Coll Relat Res.
1987;
6
515-529
Reference Ris Wihthout Link
- 17
Hafezi F, Kanellopoulos J, Wiltfang R. et al .
Corneal collagen crosslinking with riboflavin and ultraviolet A to treat induced keratectasia
after laser in situ keratomileusis.
J Cataract Refract Surg.
2007;
33
2035-2040
Reference Ris Wihthout Link
- 18
Huang R, Choe E, Min D B.
Kinetics for singlet oxygen formation by riboflavin photosensitization and the reaction
between riboflavin and singlet oxygen.
Journal Food Science.
2004;
69
726-732
Reference Ris Wihthout Link
- 19
Ihme A, Krieg T, Müller R K. et al .
Biochemical investigation of cells from keratoconus and normal cornea.
Exp Eye Res.
1983;
36
625-631
Reference Ris Wihthout Link
- 20
Kagan H M, Trackman P C.
Properties and function of lysyl oxidase.
American J Respiratory Cell Mol Biology.
1991;
5
206-210
Reference Ris Wihthout Link
- 21
Kato Y, Uchida K, Kawakishi S.
Aggregation of collagen exposed to UVA in the presence of riboflavin: a plausible
role of tyrosine modification.
Photochemisty Photobiology.
1994;
59
343-349
Reference Ris Wihthout Link
- 22
Kennedy C, Bastiaens M T, Bajdik C D. et al .
Effect of smoking and sun on the aging skin.
J Invest Dermatol.
2003;
120
548-554
Reference Ris Wihthout Link
- 23
Kohlhaas M, Spoerl E, Speck A. et al .
Eine neue Behandlung der Keratektasie nach LASIK durch Kollagenvernetzung mit Riboflavin/UVA-Licht.
Klin Monatsbl Augenheilkunde.
2005;
222
430-436
Reference Ris Wihthout Link
- 24
Kohlhaas M, Spoerl E, Schilde T. et al .
Biomechanical evidence of the distribution of cross-links in corneas treated with
riboflavin and ultraviolet A light.
J Cataract Refr Surg.
2006;
32
279-283
Reference Ris Wihthout Link
- 25
Kuo I C, Broman A, Pirouzmanesh M. et al .
Is there an association between diabetes and keratoconus?.
Ophthalmology.
2006;
113
184-90
Reference Ris Wihthout Link
- 26
Li X, Rabinowitz Y S, Tang Y G. et al .
Two-stage genome-wide linkage scan in keratoconus sib pair families.
Invest Ophthalmol Vis Sci.
2006;
47
3791-3795
Reference Ris Wihthout Link
- 27
Mackiewicz Z, Määttä M, Stenman M. et al .
Collagenolytic proteinases in keratoconus.
Cornea.
2006;
25
603-610
Reference Ris Wihthout Link
- 28
Madhukumar E, Vijayammal P.
Influence of cigarette smoke on cross-linking of dermal collagen.
Indian J Exp Biol.
1997;
35
483-486
Reference Ris Wihthout Link
- 29
Mäki J M, Sormunen R, Lippo S. et al .
Lysyl oxidase is essential for normal development and function of the respiratory
system and for the integrity of elastic and collagen fibers in various tissues.
Am J Pathol.
2005;
167
927-936
Reference Ris Wihthout Link
- 30
Mencucci R, Mazzotta C, Rossi F. et al .
Riboflavin and ultraviolet A collagen crosslinking: In vivo thermographic analysis
of the corneal surface.
J Cataract Refract Surg.
2007;
33
1005-1008
Reference Ris Wihthout Link
- 31
Netto M V, Mohan R R, Sinha S. et al .
Stromal haze, myofibroblasts, and surface irregularity after PRK.
Exp Eye Res.
2006;
82
788-797
Reference Ris Wihthout Link
- 32
Orban J M, Wilson L B, Kofroth J A.
Crosslinking of collagen gels by transglutaminase.
J Biomed Mater Res.
2004;
68A
756-762
Reference Ris Wihthout Link
- 33
Pflugfelder S C, Liu Z, Feuer W. et al .
Corneal thickness indices discriminate between keratoconus and contact lens induced
corneal thinning.
Ophthalmology.
2002;
109
2336-2341
Reference Ris Wihthout Link
- 34
Podskochy A.
Protective role of corneal epithelium against ultraviolet radiation damage.
Acta Ophthalmol Scand.
2004;
82
714-717
Reference Ris Wihthout Link
- 35
Reichl S, Müller-Goymann C C.
Entwicklung eines organotypischen Korneakonstrukts als ein In-vitro Modell für Permeationsstudien.
Ophthalmologe.
2001;
98
853-858
Reference Ris Wihthout Link
- 36
Schilde T, Kohlhaas M, Spoerl E. et al .
Enzymatischer Nachweis der Tiefenabhängigkeit der Vernetzungswirkung von Riboflavin/UVA
an der Hornhaut.
Ophthalmologe.
2007 (im Druck);
Reference Ris Wihthout Link
- 37 Schreiber J. Verfestigung der Hornhaut durch UVA 365 nm und Riboflavin oder durch Glutaraldehyd.
Dissertation. Dresden; TU Dresden 2003
Reference Ris Wihthout Link
- 38
Seiler T, Spoerl E, Huhle M. et al .
Conservative therapy of keratoconus by enhancement of collagen cross-links.
Invest Ophthalmol Vis Sci.
1996;
37
S1017
Reference Ris Wihthout Link
- 39
Seiler T, Huhle S, Spörl E. et al .
Manifest diabetes and keratoconus - a retrospective case-control study.
Graefe’s Arch Clin Exp Ophthalmol.
2000;
238
822-825
Reference Ris Wihthout Link
- 40
Semchishen V A, Mrochen M, Seminogov V N. et al .
Light beam shaping and homogenization (LSBH) by irregular microlens structure for
medical applications.
SPIE.
1998;
3251
28-33
Reference Ris Wihthout Link
- 41
Seppälä H P, Määttä M, Rautia M. et al .
EMMPRIN and MMP-1 in keratoconus.
Cornea.
2006;
25
325-330
Reference Ris Wihthout Link
- 42
Sliney D, Aron-Rosa D, DeLori F. et al .
Adjustment of guidelines for exposure of the eyr to optical radiation from ocular
instruments: statement from a task group of the International Commission on Non-Ionizing
Radiation Protection (ICNIRP).
Applied Optics.
2005;
44
2162-2176
Reference Ris Wihthout Link
- 43
Spörl E, Huhle M, Kasper M. et al .
Erhöhung der Festigkeit der Hornhaut durch Vernetzung.
Der Ophthalmologe.
1997;
94
902-906
Reference Ris Wihthout Link
- 44
Spörl E, Huhle M, Seiler T. et al .
The swelling behaviour of the cornea after artificial cross-linking.
Invest Ophthalmol Vis Sci.
1997;
38
S507
Reference Ris Wihthout Link
- 45
Spoerl E, Huhle M, Seiler T.
Induction of cross-links in corneal tissue.
Exp Eye Res.
1998;
66
97-103
Reference Ris Wihthout Link
- 46
Spoerl E, Seiler T.
Techniques for stiffening the cornea.
Refract Surg.
1999;
15
711-713
Reference Ris Wihthout Link
- 47
Spörl E, Schreiber J, Hellmund K. et al .
Untersuchungen zur Verfestigung der Hornhaut am Kaninchen.
Der Ophthalmologe.
2000;
97
203-206
Reference Ris Wihthout Link
- 48
Spoerl E, Wollensak G, Dittert D D. et al .
Thermomechanical behavior of collagen-crosslinked porcine cornea.
Ophthalmologica.
2004;
218
136-140
Reference Ris Wihthout Link
- 49
Spoerl E, Wollensak G, Reber F. et al .
Crosslinking of human amniotic membrane by glutaraldehyde.
Ophthalmic Res.
2004;
36
71-77
Reference Ris Wihthout Link
- 50
Spoerl E, Wollensak G, Seiler T.
Increased resistance of crosslinked cornea against enzymatic digestion.
Curr Eye Res.
2004;
29
35-40
Reference Ris Wihthout Link
- 51
Spoerl E, Mrochen M, Sliney D. et al .
Safety of UVA-Riboflavin cross-linking of the cornea.
Cornea.
2007;
26
385-389
Reference Ris Wihthout Link
- 52
Uzawa K, Marshall M K, Katz E P. et al .
Altered posttranslational modifications of collagen in keloid.
Biochem Biophys Res Commun.
1998;
249
652-655
Reference Ris Wihthout Link
- 53
Wollensak G, Spoerl E, Seiler T.
Riboflavin/Ultraviolet - induced collagen crosslinking for the treatment of keratoconus.
Am J Ophthalmol.
2003;
135
620-624
Reference Ris Wihthout Link
- 54
Wollensak G, Spoerl E, Wilsch M. et al .
Endothelial cell damage after riboflavin-ultraviolet-A-treatment in the rabbit.
J Cataract Ref Surg.
2003;
29
1786-1790
Reference Ris Wihthout Link
- 55
Wollensak G, Spoerl E, Seiler T.
Stress-strain measurements of human and porcine cornea after riboflavin/ultravuolet-A-induced
crosslinking.
J Cataract Refract Surg.
2003;
29
1780-1785
Reference Ris Wihthout Link
- 56
Wollensak G, Spoerl E, Wilsch M. et al .
Keratocyte apoptosis after corneal collagen-crosslinking using riboflavin-UVA treatment.
Cornea.
2004;
23
43-49
Reference Ris Wihthout Link
- 57
Wollensak G, Wilsch M, Spoerl E. et al .
Collagen fiber diameter in the rabbit cornea after collagen crosslinking by riboflavin/UVA.
Cornea.
2004;
23
503-507
Reference Ris Wihthout Link
- 58
Wollensak G, Aurich H, Pham D T. et al .
Hydration behavior of porcine cornea crosslinked with riboflavin and ultraviolet A.
J Cataract Refract Surg.
2007;
33
516-521
Reference Ris Wihthout Link
- 59
Wollensak G, Iomdina E, Dittert D D. et al .
Wound healing in the rabbit cornea after corneal collagen cross-linking with riboflavin
and UVA.
Cornea.
2007;
26
600-605
Reference Ris Wihthout Link
Prof. Eberhard Spörl
Augenklinik, Universitätsklinikum Dresden
Fetscherstr. 74
01307 Dresden
Phone: ++ 49/3 51/4 58 37 63
Fax: ++ 49/3 51/4 58 43 35
Email: eberhard.spoerl@uniklinikum-dresden.de