References and Notes
<A NAME="RS05607ST-1A">1a</A>
Noyori R.
Asymmetric Catalysis in Organic Synthesis
Wiley-Interscience;
New York:
1994.
<A NAME="RS05607ST-1B">1b</A>
Gawley R.
Aube J.
Asymmetric Synthesis
Pergamon;
New York:
1996.
<A NAME="RS05607ST-2A">2a</A>
Evans DA.
Chapman KT.
Bisaha J.
J. Am. Chem. Soc.
1988,
110:
1238
<A NAME="RS05607ST-2B">2b</A>
Castellino S.
Dwight WJ.
J. Am. Chem. Soc.
1993,
115:
2986
<A NAME="RS05607ST-2C">2c</A>
Montaudo G.
Librando V.
Caccamese S.
Maravigna P.
J. Am. Chem. Soc.
1973,
95:
6365
<A NAME="RS05607ST-2D">2d</A>
Corminboeuf O.
Renaud P.
Org. Lett.
2002,
4:
1731
<A NAME="RS05607ST-2E">2e</A>
Gnas Y.
Glorius F.
Synthesis
2006,
1899
Oxazolidinones:
<A NAME="RS05607ST-3A">3a</A>
Evans DA.
Miller SJ.
Lectka T.
J. Am. Chem. Soc.
1993,
115:
6460
<A NAME="RS05607ST-3B">3b</A>
Evans DA.
Miller SJ.
Lectka T.
von Matt P.
J. Am. Chem. Soc.
1999,
121:
7559
Acyl pyrazoles:
<A NAME="RS05607ST-3C">3c</A>
Sibi MP.
Shay JJ.
Liu M.
Jasperse CP.
J. Am. Chem. Soc.
1998,
120:
6615
<A NAME="RS05607ST-3D">3d</A>
Itoh K.
Kanemasa S.
J. Am. Chem. Soc.
2002,
124:
13394
Imides:
<A NAME="RS05607ST-3E">3e</A>
Myers JK.
Jacobsen EN.
J. Am. Chem. Soc.
1999,
121:
8959
<A NAME="RS05607ST-3F">3f</A>
Sammis GM.
Jacobsen EN.
J. Am. Chem. Soc.
2003,
125:
4442
Pyrazolidinones:
<A NAME="RS05607ST-3G">3g</A>
Sibi MP.
Stanley LM.
Nie X.
Venkatraman L.
Liu M.
Jasperse CP.
J. Am. Chem. Soc.
2007,
129:
395
<A NAME="RS05607ST-4">4</A> For a study on achiral templates in Diels-Alder reactions, see:
Sibi MP.
Chen J.
Stanley L.
Synlett
2007,
298
Acyl imidazoles:
<A NAME="RS05607ST-5A">5a</A>
Evans DA.
Fandrick KR.
Song H.-J.
J. Am. Chem. Soc.
2005,
127:
8942
<A NAME="RS05607ST-5B">5b</A>
Evans DA.
Fandrick KR.
Org. Lett.
2006,
8:
2249
<A NAME="RS05607ST-5C">5c</A>
Evans DA.
Song H.-J.
Fandrick KR.
Org. Lett.
2006,
8:
3351
α-Hydroxy ketones:
<A NAME="RS05607ST-6A">6a</A>
Palomo C.
Oiarbide M.
Kardak BG.
Garcia JM.
Linden A.
J. Am. Chem. Soc.
2005,
127:
4154
<A NAME="RS05607ST-6B">6b</A>
Palomo C.
Oiarbide M.
Garcia JM.
Gonzalez A.
Arceo E.
J. Am. Chem. Soc.
2003,
125:
13942
Aza chalcones:
<A NAME="RS05607ST-7A">7a</A>
Matsumoto K.
Jitsukawa K.
Masuda H.
Tetrahedron Lett.
2005,
46:
5687
<A NAME="RS05607ST-7B">7b</A>
Otto S.
Boccaletti G.
Engberts JBFN.
J. Am. Chem. Soc.
1998,
120:
4238
<A NAME="RS05607ST-7C">7c</A>
Wittkopp A.
Schreiner PR.
Chem. Eur. J.
2003,
9:
407
<A NAME="RS05607ST-7D">7d</A>
Rispens T.
Engberts JBFN.
J. Org. Chem.
2002,
67:
7369
<A NAME="RS05607ST-7E">7e</A>
Otto S.
Engberts JBFN.
Kwak JCT.
J. Am. Chem. Soc.
1998,
120:
9517
For selected reviews on enantioselective radical reactions, see:
<A NAME="RS05607ST-8A">8a</A>
Sibi MP.
Manyem S.
Zimmerman J.
Chem. Rev.
2003,
103:
3263
<A NAME="RS05607ST-8B">8b</A>
Zimmerman J.
Sibi MP.
Top. Curr. Chem.
2006,
263:
107
<A NAME="RS05607ST-8C">8c</A>
Sibi MP.
Porter NA.
Acc. Chem. Res.
1999,
32:
163
Enantioselective conjugate radical additions using different achiral templates. For
oxazolidinones, see:
<A NAME="RS05607ST-9A">9a</A>
Sibi MP.
Ji J.
Wu JH.
Gurtler S.
Porter NA.
J. Am. Chem. Soc.
1996,
118:
9200
Imides:
<A NAME="RS05607ST-9B">9b</A>
Sibi MP.
Petrovic G.
Zimmerman J.
J. Am. Chem. Soc.
2005,
127:
2390
Pyrazoles:
<A NAME="RS05607ST-9C">9c</A>
Sibi MP.
Shay JJ.
Ji J.
Tetrahedron Lett.
1997,
38:
5955
Pyrazolidinones:
<A NAME="RS05607ST-9D">9d</A>
Sibi MP.
Prabagaran N.
Synlett
2004,
2421
Naphthosultams:
<A NAME="RS05607ST-9E">9e</A>
Sibi MP.
Sausker JB.
J. Am. Chem. Soc.
2002,
124:
984
Pyrones:
<A NAME="RS05607ST-9F">9f</A>
Sibi MP.
Zimmerman J.
J. Am. Chem. Soc.
2006,
128:
13346
<A NAME="RS05607ST-10">10</A>
Lee S.
Lim CJ.
Kim S.
Subramaniam R.
Zimmerman J.
Sibi MP.
Org. Lett.
2006,
8:
4311
<A NAME="RS05607ST-11A">11a</A>
de Vries AHM.
Meetsma A.
Feringa BL.
Angew. Chem., Int. Ed. Engl.
1996,
35:
2374
<A NAME="RS05607ST-11B">11b</A>
G u C.-L.
Liu L.
Sui Y.
Zhao J.-L.
Wang D.
Chen Y.-J.
Tetrahedron: Asymmetry
2007,
18:
455
<A NAME="RS05607ST-11C">11c</A>
Zhang Z.
Dong Y.-w.
Wang G.-w.
Komatsu K.
Synlett
2004,
61
<A NAME="RS05607ST-12">12</A>
All new compounds showed analytical and spectral characteristics consistent with their
structure. An experi-mental procedure and spectral data for select products are provided.
General Procedure for Conjugate Radical Addition
A solution of the appropriate Lewis acid (0.06 mmol) and bisoxazoline ligand (0.06
mmol) in CH2Cl2 (3 mL) was to stirred at r.t. for 30 min under N2. Then, the substrate (0.20 mmol) in CH2Cl2 (1 mL) was added. After stirring for another 30 min, the solution was cooled to -78
°C in a dry ice-acetone bath. To the solution was added the radical precursor RX (2.0
mmol), Bu3SnH (1.0 mmol), and Et3B (1.0 M in hexane, 1.0 mL, 1.0 mmol) at -78 °C. A 10 mL aliquot of O2 was then added via syringe. The reaction mixture was stirred at -78 °C for the time
shown in Table
[3]
. After completion (TLC), ethylenediamine tetraacetic acid disodium salt solution
(1.0 M in H2O, 10 mL) was added to the reaction mixture. It was then extracted with CH2Cl2 (2 × 30 mL) and dried with Na2SO4. The crude product was purified by flash column chromatography to yield the alkylated
products.
Compound 3a
Colorless liquid. The enantiomeric purity was determined by HPLC analysis (254 nm,
25 °C): t
R(minor) = 13.8 min; t
R(major) 15.0 min [Chiracel AD-H (0.46 cm × 25 cm; from Daicel Chemical Ind., Ltd.)
hexane-i-PrOH (99:1), 0.5 mL/min] as 64% ee. [α]D
25 14.2 (c 1.39, CH2Cl2). 1H NMR (500 MHz, CDCl3): δ = 0.84 (d, J = 6.5 Hz, 3 H), 1.02 (d, J = 6.5 Hz, 3 H), 1.95-1.99 (m, 1 H), 3.21-3.25 (m, 1 H), 3.61 (dd, J = 17.5, 5.0 Hz, 1 H), 3.77 (dd, J = 17.5, 9.5 Hz, 1 H), 7.12-7.22 (m, 3 H), 7.22-7.40 (m, 2 H), 7.41-7.43 (m, 1 H),
7.73-7.76 (m, 1 H), 7.89-7.91 (m, 1 H), 8.68-8.69 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 20.5, 20.8, 33.5, 41.1, 47.6, 121.8, 125.9, 126.9, 127.9, 128.5, 136.7, 143.9,
148.8, 153.6, 201.0. IR (neat): 995, 1641, 1697, 2960, 3426 cm-1. ESI-HRMS: m/z calcd for C17H19NONa+: 276.1364; found: 276.1349.
Compound 3b
Colorless liquid. The enantiomeric purity was determined by HPLC analysis (254 nm,
25 °C): t
R(minor) = 14.9 min; t
R(major) = 17.9 min [Chiracel AD-H (0.46 cm × 25 cm; from Daicel Chemical Ind., Ltd.)
hexane-i-PrOH (99:1) 0.5 mL/min] as 66% ee. [α]D
25 13.8 (c 1.11, CH2Cl2). 1H NMR (500 MHz, CDCl3): δ = 0.79 (d, J = 6.5 Hz, 3 H), 0.98 (d, J = 6.5 Hz, 3 H), 1.88-1.93 (m, 1 H), 3.14-3.18 (m, 1 H), 3.52 (dd, J = 17.5, 5.0 Hz, 1 H), 3.73 (dd, J = 17.5, 5.0 Hz, 1 H), 7.14 (d, 3 H), 7.19 (d, 3 H), 7.42-7.45 (m, 1 H), 7.75-7.88
(m, 1 H), 7.89-7.90 (m, 1 H), 8.66-8.67 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 20.3, 20.7, 33.4, 41.0, 47.1, 121.8, 127.0, 128.0, 129.8, 131.6, 136.8, 142.3,
148.8, 153.4, 200.8. IR (neat): 996, 1490, 1584, 1642, 1697, 2959, 3431 cm-1. ESI-HRMS: m/z calcd for C17H18ClNONa+: 310.0975; found: 310.0962.
Compound 3g
Colorless liquid. The enantiomeric purity was determined by HPLC analysis (254 nm,
25 °C): t
R(major) = 16.4 min; t
R(minor) = 18.9 min [Chiracel OJ-H (0.46 cm × 25 cm; from Daicel Chemical Ind., Ltd.)
hexane-i-PrOH (99:1), 0.5 mL/min] as 43% ee. [α]D
25 1.0 (c 0.87, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 0.85 (d, J = 6.0 Hz, 3 H), 0.87 (d, J = 6.0 Hz, 3 H), 1.24-1.30 (m, 1 H), 1.32-1.44 (m, 1 H), 1.60 (dt, J = 8.0, 7.6 Hz, 2 H), 1.74-1.78 (m, 1 H), 2.08-2.13 (m, 1 H), 2.56 (t, J = 7.6 Hz, 2 H), 3.08 (dd, J = 16.8, 6.1 Hz, 1 H), 3.15 (dd, J = 16.8, 6.1 Hz, 1 H), 7.11-7.14 (m, 3 H), 7.20-7.24 (m, 2 H), 7.42-7.45 (m, 1 H),
7.78-7.83 (m, 1 H), 8.00 (d, J = 7.6 Hz, 1 H), 8.65-8.67 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 18.7, 19.6, 29.3, 30.0, 31.2, 36.1, 38.9, 39.3, 121.8, 125.5, 126.9, 128.2,
128.3, 136.8, 142.7, 148.8, 153.8, 202.4. IR (neat): 995, 1583, 1642, 1692, 2957,
3431 cm-1. ESI-HRMS: m/z calcd for C20H25NONa+: 318.1834; found: 318.1814.
Compound 3h
Colorless liquid. The enantiomeric purity was determined by HPLC analysis (254 nm,
25 °C): t
R(minor) = 21.2 min; t
R(major) = 23.9 min [Chiracel AD-H (0.46 cm × 25 cm; from Daicel Chemical Ind., Ltd.)
hexane-i-PrOH (99:1), 0.5 mL/min] as 69% ee. [α]D
25 2.9 (c 1.00, CH2Cl2). 1H NMR (500 MHz, CDCl3): δ = 0.81 (t, J = 7.5 Hz, 3 H), 1.62-1.65 (m, 1 H), 1.72-1.76 (m, 1 H), 3.19-3.22 (m, 1 H), 3.49
(dd, J = 17.5, 4.5 Hz, 1 H), 3.57 (dd, J = 17.5, 4.2 Hz, 1 H), 3.76 (s, 3 H), 6.80 (dd, J = 7.0, 2.5 Hz, 2 H), 7.16 (dd, J = 7.0, 2.5 Hz, 2 H), 7.41-7.44 (m, 1 H), 7.58-7.79 (m, 1 H), 7.93-7.95 (m, 1 H),
8.65-8.67 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 12.0, 29.7, 41.9, 44.4, 55.1, 113.6, 121.8, 126.9, 128.6, 136.8, 136.9, 148.8,
153.6, 157.8, 200.9. IR (neat): 995, 1035, 1247, 1512, 1584, 1612, 1640, 1691,
2961, 3436 cm-1. ESI-HRMS: m/z calcd for C17H19NO2Na+: 292.1313; found: 292.1325.
Compound 3i
Colorless liquid. The enantiomeric purity was determined by HPLC analysis (254 nm,
25 °C): t
R(minor) = 22.9 min; t
R(major) = 24.9 min [Chiracel AD-H (0.46 cm × 25 cm; from Daicel Chemical Ind., Ltd.)
hexane-i-PrOH (99:1), 0.5 mL/min] as 61% ee. [α]D
25 2.8 (c 1.20, CH2Cl2). 1H NMR (500 MHz, CDCl3): δ = 0.85 (t, J = 7.0 Hz, 3 H), 1.16-1.25 (m, 2 H), 1.56-1.74 (m, 2 H), 3.29-3.35 (m, 1 H), 3.48
(dd, J = 17.0, 6.0 Hz, 1 H), 3.55 (dd, J = 17.0, 7.5 Hz, 1 H), 3.75 (s, 3 H), 6.79 (dt, J = 6.5, 2.5 Hz, 2 H), 7.16 (dt, J = 6.5, 2.0 Hz, 2 H), 7.41-7.44 (m, 1 H), 7.76-7.79 (m, 1 H), 7.94 (dd, J = 8.0, 1.0 Hz, 1 H), 8.65-8.66 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 14.0, 20.6, 39.1, 39.9, 44.7, 55.1, 113.6, 121.8, 126.9, 128.5, 136.8, 137.2,
148.8, 153.6, 157.8, 200.8. IR (neat): 995, 1036, 1178, 1247, 1512, 1612, 1696, 2930,
2956, 3435 cm-1. ESI-HRMS: m/z calcd for C18H21NO2Na+: 306.1465; found: 306.1466.
Experimental Procedure for Cleavage of 2-Acylpyridine 3a
To an oven-dried 6-dram vial containing a magnetic stirring bar, 4 Å MS (100 mg) and
3a (50.6 mg, 0.2 mmol), was added 2 mL of freshly distilled MeCN and MeOTf (0.6 mmol,
77 µL) successively under N2 atmosphere. After stirring for 2 h at r.t., 6 M NaOH (50 µL) was added at 0 °C. The
reaction temperature was increased to 90 °C and maintained at this temperature for
5 h. The reaction was cooled to r.t. and quenched with 2 M HCl (10 mL). The reaction
was diluted with EtOAc and partitioned between EtOAc and H2O. The combined organic phase was dried over anhyd Na2SO4, filtered, and evaporated. The residue was chromatographed on a silica gel column
to give 6a in 95% yield (eluant: MeOH-CH2Cl2, 5:95).
Compound 6a
[α]D
25 -21.4 (c 1.62, CHCl3) {Lit.15 data for R-isomer (97% ee): [α]D
25 +33.54 (c 2.75, CHCl3)}. 1H NMR (400 MHz, CDCl3): δ = 0.74 (d, J = 6.8 Hz, 3 H), 0.92 (d, J = 6.8 Hz, 3 H), 1.83-1.87 (m, 1 H), 2.60 (dd, J = 15.6, 9.6 Hz, 1 H), 2.78 (dd, J = 6.8, 15.6 Hz, 1 H), 2.83-2.87 (m, 1 H), 7.11-7.27 (m, 5 H), 10.39 (br, 1 H). 13C NMR (100 MHz, CDCl3): δ = 20.1, 20.5, 33.1, 38.1, 48.4, 126.4, 128.1, 128.2, 142.5, 179.0.
<A NAME="RS05607ST-13A">13a</A>
Reetz MT.
Jiao N.
Angew. Chem. Int. Ed.
2006,
45:
2416
<A NAME="RS05607ST-13B">13b</A>
Roelfes G.
Boersma AJ.
Feringa BL.
Chem. Commun.
2006,
635
<A NAME="RS05607ST-14C">14c</A> For computational data on zinc triflate mediated Diels-Alder reaction using azachalcones
with s-cis-rotamer geometry, see:
Domingo LR.
Andres J.
Alves CN.
Eur. J. Org. Chem.
2002,
2557
<A NAME="RS05607ST-14">14</A>
Sibi MP.
Ji J.
J. Org. Chem.
1997,
62:
3800