Subscribe to RSS
DOI: 10.1055/s-2007-992133
© Georg Thieme Verlag KG Stuttgart · New York
Dopamine and Serotonin Interactions in the Prefrontal Cortex: Insights on Antipsychotic Drugs and Their Mechanism of Action
Publication History
Publication Date:
17 December 2007 (online)

Abstract
Diminished activity within the prefrontal cortex (PFC) has been associated with many of the cognitive deficits that are observed in schizophrenia. It has been hypothesized that antipsychotic drugs (APDs) used to treat schizophrenia restore normal activity by antagonizing the dopamine (DA) D2 receptor, which is also known to modulate key ionic currents in the PFC. However, the hypothesis that an under-active cortical DA system is responsible for schizophrenic symptoms has been challenged by evidence that newer atypical APDs are weak antagonists at the D2 receptor but potent antagonists at the serotonin (5-HT) 2A receptor [57]. This review examines how DA and 5-HT modulate cortical activity and how they may interact in ways that are relevant to schizophrenia. It is concluded that although D2 receptor antagonism remains a critical factor in restoring impaired cortical activity, effects on 5-HT receptors may act in a synergistic manner on NMDA and GABA currents to potentiate antipsychotic actions in the PFC.
References
- 1
Aghajanian GK, Marek GJ.
Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical
pyramidal cells.
Neuropharmacology.
1997;
36
((4-5))
589-599
MissingFormLabel
- 2
Aghajanian GK, Marek GJ.
Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal
cortex by an asynchronous mode of glutamate release.
Brain Res.
1999;
825
((1-2))
161-171
MissingFormLabel
- 3
Araneda R, Andrade R.
5-Hydroxytryptamine2 and 5-hydroxytryptamine 1A receptors mediate opposing responses
on membrane excitability in rat association cortex.
Neuroscience.
1991;
40
((2))
399-412
MissingFormLabel
- 4
Arvanov VL, Liang X, Magro P, Roberts R, Wang RY.
A pre- and postsynaptic modulatory action of 5-HT and the 5-HT2A, 2C receptor agonist
DOB on NMDA-evoked responses in the rat medial prefrontal cortex.
Eur J Neurosci.
1999;
11
((8))
2917-2934
MissingFormLabel
- 5
Assie MB, Ravailhe V, Faucillon V, Newman-Tancredi A.
Contrasting contribution of 5-hydroxytryptamine 1A receptor activation to neurochemical
profile of novel antipsychotics: frontocortical dopamine and hippocampal serotonin
release in rat brain.
J Pharmacol Exp Ther.
2005;
315
((1))
265-272
MissingFormLabel
- 6
Auclair A, Blanc G, Glowinski J, Tassin JP.
Role of serotonin 2A receptors in the D-amphetamine-induced release of dopamine: comparison
with previous data on alpha1b-adrenergic receptors.
J Neurochem.
2004;
91
((2))
318-326
MissingFormLabel
- 7
Beique JC, Chapin-Penick EM, Mladenovic L, Andrade R.
Serotonergic facilitation of synaptic activity in the developing rat prefrontal cortex.
J Physiol.
2004;
556
((Pt 3))
739-754
MissingFormLabel
- 8
Beique JC, Imad M, Mladenovic L, Gingrich JA, Andrade R.
Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic
activity in prefrontal cortex.
Proc Natl Acad Sci USA.
2007;
104
((23))
9870-9875
MissingFormLabel
- 9
Bortolozzi A, Diaz-Mataix L, Scorza MC, Celada P, Artigas F.
The activation of 5-HT receptors in prefrontal cortex enhances dopaminergic activity.
J Neurochem.
2005;
95
((6))
1597-1607
MissingFormLabel
- 10
Burnet PWJ, Chen CPL-H, MacGowan S, Franklin M, Harrison PJ.
The effects of clozapine and haloperidol on serotonin -1A, -2A, and -2C receptor gene
expression and serotonin metabolism in the rat forebrain.
Neuroscience.
1996;
73
531-540
MissingFormLabel
- 11
Cai X, Flores-Hernandez J, Feng J, Yan Z.
Activity-dependent bidirectional regulation of GABA(A) receptor channels by the 5-HT(4)
receptor-mediated signalling in rat prefrontal cortical pyramidal neurons.
J Physiol.
2002a;
540
((Pt 3))
743-759
MissingFormLabel
- 12
Cai X, Gu Z, Zhong P, Ren Y, Yan Z.
Serotonin 5-HT1A receptors regulate AMPA receptor channels through inhibiting Ca2+/calmodulin-dependent
kinase II in prefrontal cortical pyramidal neurons.
J Biol Chem.
2002b;
277
((39))
36553-36562
MissingFormLabel
- 13
Carlsson A.
The neurochemical circuitry of schizophrenia.
Pharmacopsychiatry.
2006;
39
(Suppl 1)
S10-S14
MissingFormLabel
- 14
Carr DB, Cooper DC, Ulrich SL, Spruston N, Surmeier DJ.
Serotonin receptor activation inhibits sodium current and dendritic excitability in
prefrontal cortex via a protein kinase C-dependent mechanism.
J Neurosci.
2002;
22
((16))
6846-6855
MissingFormLabel
- 15
Chen G, Greengard P, Yan Z.
Potentiation of NMDA receptor currents by dopamine D1 receptors in prefrontal cortex.
Proc Natl Acad Sci USA.
2004;
101
((8))
2596-2600
MissingFormLabel
- 16
Coyle JT, Tsai G, Goff D.
Converging evidence of NMDA receptor hypofunction in the pathophysiology of schizophrenia.
Ann N Y Acad Sci.
2003;
1003
318-327
MissingFormLabel
- 17
Devoto P, Flore G, Pani L, Gessa GL.
Evidence for co-release of noradrenaline and dopamine from noradrenergic neurons in
the cerebral cortex.
Mol Psychiatry.
2001;
6
657-664
MissingFormLabel
- 18
Diaz-Mataix L, Scorza MC, Bortolozzi A, Toth M, Celada P, Artigas F.
Involvement of 5-HT1A receptors in prefrontal cortex in the modulation of dopaminergic
activity: role in atypical antipsychotic action.
J Neurosci.
2005;
25
((47))
10831-10843
MissingFormLabel
- 19
Durstewitz D.
A few important points about dopamine's role in neural network dynamics.
Pharmacopsychiatry.
2006;
39
(Suppl 1)
S72-S75
MissingFormLabel
- 20
Durstewitz D, Seamans JK.
The computational role of dopamine D1 receptors in working memory.
Neural Netw.
2002;
15
561-572
MissingFormLabel
- 21
Fischette CT, Nock B, Renner K.
Effects of 5,7-dihydroxytryptamine on serotonin1 and serotonin2 receptors throughout
the rat central nervous system using quantitative autoradiography.
Brain Res.
1987;
421
((1-2))
263-279
MissingFormLabel
- 22
Garris PA, Ciolkowski EL, Pastore P, RM.
Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain.
J Neurosci.
1994;
14
6084-6093
MissingFormLabel
- 23
Garris PA, Collins LB, Jones SR, Wightman RM.
Evoked extracellular dopamine in vivo in the medial prefrontal cortex.
J Neurochem.
1993;
61
637-647
MissingFormLabel
- 24
Garris PA, Wightman RM.
Different kinetics govern dopaminergic transmission in the amygdala, prefrontal cortex,
and striatum: an in vivo voltammetric study.
J Neurosci.
1994;
14
442-450
MissingFormLabel
- 25
Gellman RL, Aghajanian GK.
Pyramidal cells in piriform cortex receive a convergence of inputs from monoamine
activated GABAergic interneurons.
Brain Res.
1993;
600
((1))
63-73
MissingFormLabel
- 26
Gobert A, Millan MJ.
Serotonin (5-HT)2A receptor activation enhances dialysate levels of dopamine and noradrenaline,
but not 5-HT, in the frontal cortex of freely-moving rats.
Neuropharmacology.
1999;
38
((2))
315-317
MissingFormLabel
- 27
Goldman-Rakic PS, Muly
3rd
EC, Williams GV.
D(1) receptors in prefrontal cells and circuits.
Brain Res Rev.
2000;
31
((2-3))
295-301
MissingFormLabel
- 28
Gonzalez-Burgos G, Kroener S, Seamans JK, Lewis DA, Barrionuevo G.
Dopaminergic modulation of short-term synaptic plasticity in fast-spiking interneurons
of primate dorsolateral prefrontal cortex.
J Neurophysiol.
2005;
94
((6))
4168-4177
MissingFormLabel
- 29
Gonzalez-Islas C, Hablitz JJ.
Dopamine enhances EPSCs in layer II-III pyramidal neurons in rat prefrontal cortex.
J Neurosci.
2003;
23
867-875
MissingFormLabel
- 30
Gorelova N, Seamans JK, Yang CR.
Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition
in rat prefrontal cortex.
J Neurophysiol.
2002;
88
3150-3166
MissingFormLabel
- 31
Gorelova NA, Yang CR.
Dopamine D1/D5 receptor activation modulates a persistent sodium current in rat prefrontal
cortical neurons in
vitro.
J Neurophysiol.
2000;
84
75-87
MissingFormLabel
- 32
Gu Z, Jiang Q, Yan Z.
RGS4 modulates serotonin signaling in prefrontal cortex and links to serotonin dysfunction
in a rat model of schizophrenia.
Mol Pharmacol.
2007;
71
((4))
1030-1039
MissingFormLabel
- 33
Gulledge AT, Jaffe DB.
Multiple effects of dopamine on layer V pyramidal cell excitability in rat prefrontal
cortex.
J Neurophysiol.
2001;
86
586-595
MissingFormLabel
- 34
Henze DA, Gonzalez-Burgos GR, Urban NN, Lewis DA, Barrionuevo G.
Dopamine increases excitability of pyramidal neurons in primate prefrontal cortex.
J Neurophysiol.
2000;
84
2799-2809
MissingFormLabel
- 35
Hernandez L, Hoebel BG.
Chronic clozapine selectively decreases prefrontal cortex dopamine as shown by simultaneous
cortical, accumbens, and striatal microdialysis in freely moving rats.
Pharmacol Biochem Behav.
1995;
52
581-589
MissingFormLabel
- 36
Hildebrand BE, Nomikos GG, Hertel P, Schilstrom B, Svensson TH.
Reduced dopamine output in the nucleus accumbens but not in the medial prefrontal
cortex in rats displaying a mecamylamine-precipitated nicotine withdrawal syndrome.
Brain Res.
1998;
779
214-225
MissingFormLabel
- 37
Huang YY, Kandel ER.
D1/D5 receptor agonists induce a protein synthesis-dependent late potentiation in
the CA1 region of the hippocampus.
Proc Natl Acad Sci USA.
1995;
92
2446-2450
MissingFormLabel
- 38
Ichikawa J, Ishii H, Bonaccorso S, Fowler WL, O'Laughlin IA, Meltzer HY.
5-HT(2A) and D(2) receptor blockade increases cortical DA release via 5-HT(1A) receptor
activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine
release.
J Neurochem.
2001;
76
((5))
1521-1531
MissingFormLabel
- 39
Ichikawa J, Kuroki T, Dai J, Meltzer HY.
Effect of antipsychotic drugs on extracellular serotonin levels in rat medial prefrontal
cortex and nucleus accumbens.
Eur J Pharmacol.
1998;
351
((2))
163-171
MissingFormLabel
- 40
Iyer RN, Bradberry CW.
Serotonin-mediated increase in prefrontal cortex dopamine release: pharmacological
characterization.
J Pharmacol Exp Ther.
1996;
277
((1))
40-47
MissingFormLabel
- 41
Izaki Y, Hori K, Nomura, M.
Dopamine and acetylcholine elevation on lever-press acquisition in rat prefrontal
cortex.
Neurosci Lett.
1998;
258
33-36
MissingFormLabel
- 42
Jakab RL, Goldman-Rakic PS.
5-Hydroxytryptamine2A serotonin receptors in the primate cerbral cortex: Possible
site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical
dendrites.
Proc Natl Acad Sci USA.
1998;
95
735-740
MissingFormLabel
- 43
Jentsch JD, Roth RH.
The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the
dopamine hypothesis of schizophrenia.
Neuropsychopharmacology.
1999;
20
((3))
201-225
MissingFormLabel
- 44
Kapur S, Mamo D.
Half a century of antipsychotics and still a central role for dopamine D2 receptors.
Prog Neuropsychopharmacol Biol Psychiatry.
2003;
27
((7))
1081-1090
MissingFormLabel
- 45
Kapur S, Seeman P.
Does fast dissociation from the dopamine d(2) receptor explain the action of atypical
antipsychotics? A new hypothesis.
Am J Psychiatry.
2001;
158
((3))
360-369
MissingFormLabel
- 46
Keefe RS, Sweeney JA, Gu H, Hamer RM, Perkins DO, MacEvoy JP, Lieberman JA.
Effects of olanzapine, quetiapine, and risperidone on neurocognitive function in early
psychosis: a randomized, double-blind 52-week comparison.
Am J Psychiatry.
2007;
164
((7))
1061-1071
MissingFormLabel
- 47
Krystal JH, Belger AD, Douza C, Anand A, Charney DS, Aghajanian GK. et al .
Therapeutic implications of the hyperglutamatergic effects of NMDA antagonists.
Neuropsychopharmacology.
1999;
22
A143-A157
MissingFormLabel
- 48
Kuroki T, Meltzer HY, Ichikawa J.
Effects of antipsychotic drugs on extracellular dopamine levels in rat medial prefrontal
cortex and nucleus accumbens.
J Pharmacol Exp Ther.
1999;
288
((2))
774-781
MissingFormLabel
- 49
Lambe EK, Aghajanian GK.
The role of Kv1.2-containing potassium channels in serotonin-induced glutamate release
from thalamocortical terminals in rat frontal cortex.
J Neurosci.
2001;
21
((24))
9955-9963
MissingFormLabel
- 50
Lambe EK, Goldman-Rakic PS, Aghajanian GK.
Serotonin induces EPSCs preferentially in layer V pyramidal neurons of the frontal
cortex in the rat.
Cereb Cortex.
2000;
10
((10))
974-980
MissingFormLabel
- 51
Lucas G, Spampinato U.
Role of striatal serotonin2A and serotonin2C receptor subtypes in the control of in
vivo dopamine outflow in the rat striatum.
J Neurochem.
2000;
74
((2))
693-701
MissingFormLabel
- 52
Marek GJ, Aghajanian GK.
5-Hydroxytryptamine-induced excitatory postsynaptic currents in neocortical layer
V pyramidal cells: suppression by μ-opiate receptor activation.
Neuroscience.
1998;
86
((2))
485-497
MissingFormLabel
- 53
Marek GJ, Aghajanian GK.
5-HT2A receptor or alpha1-adrenoceptor activation induces excitatory postsynaptic
currents in layer V pyramidal cells of the medial prefrontal cortex.
Eur J Pharmacol.
1999;
367
((2-3))
197-206
MissingFormLabel
- 54
Marek GJ, Wright RA, Gewirtz JC, Schoepp DD.
A major role for thalamocortical afferents in serotonergic hallucinogen receptor function
in the rat neocortex.
Neuroscience.
2001;
105
((2))
379-392
MissingFormLabel
- 55
Matsubara S, Meltzer HY.
Effect of typical and atypical antipsychotic drugs on 5-HT2 receptor density in rat
cerebral cortex.
Life Sci.
1989;
45
1397-1406
MissingFormLabel
- 56
Matsumoto M, Togashi H, Mori K, Ueno K, Miyamoto A, Yoshioka M.
Characterization of endogenous serotonin-mediated regulation of dopamine release in
the rat prefrontal cortex.
Eur J Pharmacol.
1999;
383
((1))
39-48
MissingFormLabel
- 57
Meltzer HY.
Clinical studies on the mechanism of action of clozapine: the dopamine-serotonin hypothesis
of schizophrenia.
Psychopharmacol (Berl).
1989;
99
(Suppl 1)
S18-S27
MissingFormLabel
- 58
Meltzer HY, Li Z, Kaneda Y, Ichikawa J.
Serotonin receptors: their key role in drugs to treat schizophrenia.
Prog Neuropsychopharmacol Biol Psychiatry.
2003;
27
((7))
1159-1172
MissingFormLabel
- 59
Millan MJ.
Improving the treatment of schizophrenia: focus on serotonin (5-HT)(1A) receptors.
J Pharmacol Exp Ther.
2000;
295
((3))
853-861
MissingFormLabel
- 60
Miyamoto S, Duncan GE, Marx CE, Lieberman JA.
Treatments for schizophrenia: a critical review of pharmacology and mechanisms of
action of antipsychotic drugs.
Molecular Psychiatry.
2005;
10
79-104
MissingFormLabel
- 61
Moghaddam B, Adams B, Verma A, Daly D.
Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway
from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with
the prefrontal cortex.
J Neurosci.
1997;
17
((8))
2921-2927
MissingFormLabel
- 62
Mori K, Nagao M, Yamashita H, Morinobu S, Yamawaki S.
Effect of switching to atypical antipsychotics on memory in patients with chronic
schizophrenia.
Prog Neuropsychopharmacol Biol Psychiatry.
2004;
28
((4))
659-665
MissingFormLabel
- 63
Moron JA, Brockington A, Wise RA, Rocha BA, Hope BT.
Dopamine uptake through the norepinephrine transporter in brain regions with low levels
of the dopamine transporter: evidence from knock-out mouse lines.
J Neurosci.
2002;
22
389-395
MissingFormLabel
- 64
Nichols DE.
Hallucinogens.
Pharmacol Ther.
2004;
101
((2))
131-181
MissingFormLabel
- 65
O'Dell SJ, Hoste GJ La, Widmark CB, Potkin SG, Marshall JF.
Chronic treatment with clozapine or haloperidol differentially regulates dopamine
and serotonin receptors in rat brain.
Synapse.
1990;
6
146-153
MissingFormLabel
- 66
Olney JW, Farber NB.
NMDA antagonists as neurotherapeutic drugs, psychotogens, neurotoxins, and research
tools for studying schizophrenia.
Neuropsychopharmacology.
1995;
13
((4))
335-345
MissingFormLabel
- 67
Pazos A, Cortes R, Palacios JM.
Quantitative autoradiographic mapping of serotonin receptors in the rat brain II.
Serotonin-2 receptors.
Brain Res.
1985;
346
((2))
231-249
MissingFormLabel
- 68
Pehek EA, MacFarlane HG, Maguschak K, Price B, Pluto CP.
M100,907, a selective 5-HT(2A) antagonist, attenuates dopamine release in the rat
medial prefrontal cortex.
Brain Res.
2001;
888
((1))
51-59
MissingFormLabel
- 69
Pehek EA, Nocjar C, Roth BL, Byrd TA, Mabrouk OS.
Evidence for the preferential involvement of 5-HT2A serotonin receptors in stress-
and drug-induced dopamine release in the rat medial prefrontal cortex.
Neuropsychopharmacology.
2006;
31
((2))
265-277
MissingFormLabel
- 70
Rollema H, Lu Y, Schmidt AW, Sprouse JS, Zorn SH.
5-HT(1A) receptor activation contributes to ziprasidone-induced dopamine release in
the rat prefrontal cortex.
Biol Psychiatry.
2000;
48
((3))
229-237
MissingFormLabel
- 71
Samaha AN, Seeman P, Stewart J, Rajabi H, Kapur S.
Breakthrough” dopamine supersensitivity during ongoing antipsychotic treat-ment leads
to treatment failure over time.
J Neurosci.
2007;
27
((11))
2979-2986
MissingFormLabel
- 72
Schmidt CJ, Fadayel GM.
The selective 5-HT2A receptor antagonist, MDL 100,907, increases dopamine efflux in
the prefrontal cortex of the rat.
Eur J Pharmacol.
1995;
273
((3))
273-279
MissingFormLabel
- 73
Seeman P.
The absolute density of neurotransmitter receptors in the brain. Example for dopamine
receptors.
J Pharmacol Methods.
1987;
17
((4))
347-360
MissingFormLabel
- 74
Seeman P.
Atypical antipsychotics: mechanism of action.
Can J Psychiatry.
2002;
47
((1))
27-38
MissingFormLabel
- 75
Seeman P.
An update of fast-off dopamine D2 atypical antipsychotics.
Am J Psychiatry.
2005;
162
((10))
1984-1985
MissingFormLabel
- 76
Seeman P, Bzowej NH, Guan HC, Bergeron C, Reynolds GP, Bird ED. et al .
Human brain D1 and D2 dopamine receptors in schizophrenia, Alzheimer's, Parkinson's,
and Huntington's diseases.
Neuropsychopharmacology.
1987;
1
((1))
5-15
MissingFormLabel
- 77
Seeman P, Schwarz J, Chen JF, Szechtman H, Perreault M, MacKnight GS. et al .
Psychosis pathways converge via D2high dopamine receptors.
Synapse.
2006;
60
((4))
319-346
MissingFormLabel
- 78
Seeman P, Tallerico T.
Rapid release of antipsychotic drugs from dopamine D2 receptors: an explanation for
low receptor occupancy and early clinical relapse upon withdrawal of clozapine or
quetiapine.
Am J Psychiatry.
1999;
156
((6))
876-884
MissingFormLabel
- 79
Seamans JK, Durstewitz D, Christie B, Stevens CF, Sejnowski TJ.
Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal
cortex neurons.
Proc Natl Acad Sci USA.
2001a;
98
301-306
MissingFormLabel
- 80
Seamans JK, Gorelova N, Durstewitz D, Yang CR.
Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal
neurons.
J Neurosci.
2001b;
21
3628-3638
MissingFormLabel
- 81
Seamans JK, Yang CR.
The principal features and mechanisms of dopamine modulation in the prefrontal cortex.
Prog Neurobiol.
2004;
74
((1))
1-58
MissingFormLabel
- 82
Sesack SR, Hawrylak VA, Guido MA, Levey AI.
Cellular and subcellular localization of the dopamine transporter in rat cortex.
Adv Pharmacol.
1998;
42
171-174
MissingFormLabel
- 83
Sesack SR, Pickel VM.
Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of
catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in
the ventral tegmental area.
J Comp Neurol.
1992;
320
((2))
145-160
MissingFormLabel
- 84
Sheldon PW, Aghajanian GK.
Serotonin (5-HT) induces IPSPs in pyramidal layer cells of rat piriform cortex: evidence
for the involvement of a 5-HT2-activated interneuron.
Brain Res.
1990;
506
((1))
62-69
MissingFormLabel
- 85
Sheldon PW, Aghajanian GK.
Excitatory responses to serotonin (5-HT) in neurons of the rat piriform cortex: evidence
for mediation by 5-HT1C receptors in pyramidal cells and 5-HT2 receptors in interneurons.
Synapse.
1991;
9
((3))
208-218
MissingFormLabel
- 86
Shoblock JR, Maisonneuve IM, Glick SD.
Differences between D-methamphetamine and D-amphetamine in rats: working memory, tolerance,
and extinction.
Psychopharmacology.
2003;
170
150-156
MissingFormLabel
- 87
Tanaka E, North RA.
Actions of 5-hydroxytryptamine on neurons of the rat cingulate cortex.
J Neurophysiol.
1993;
69
((5))
1749-1757
MissingFormLabel
- 88
Trantham-Davidson H, Kroner S, Seamans JK.
Dopamine modulation of prefrontal cortex interneurons occurs independently of DARPP-32.
Cereb Cortex.
2007;
, in press
MissingFormLabel
- 89
Trantham-Davidson H, Neely LC, Lavin A, Seamans JK.
Mechanisms underlying differential D1 versus D2 dopamine receptor regulation of inhibition
in prefrontal cortex.
J Neurosci.
2004;
24
((47))
10652-10659
MissingFormLabel
- 90
Tseng KY, O'Donnell P.
Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability
involve multiple signaling mechanisms.
J Neurosci.
2004;
24
((22))
5131-5139
MissingFormLabel
- 91
Wang XJ.
Toward a prefrontal microcircuit model for cognitive deficits in schizophrenia.
Pharmacopsychiatry.
2006;
39
(Suppl 1)
S80-S87
MissingFormLabel
- 92
Westerink BH, Kawahara Y, Boer P De, Geels C, Vries JB De, Wikstrom HV. et al .
Antipsychotic drugs classified by their effects on the release of dopamine and noradrenaline
in the prefrontal cortex and striatum.
Eur J Pharmacol.
2001;
412
((2))
127-138
MissingFormLabel
- 93
Willins DL, Deutch AY, Roth BL.
Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the
rat cortex.
Synapse.
1997;
27
32-79
MissingFormLabel
- 94
Wilmot CA, Szczepanik AM.
Effects of acute and chronic treatment with clozapine and haloperidol on serotonin
(5-HT2) and dopamine (D2) receptors in the rat brain.
Brain Res.
1989;
487
288-298
MissingFormLabel
- 95
Winterer G.
Cortical microcircuits in schizophrenia-the dopamine hypothesis revisited.
Pharmacopsychiatry.
2006;
39
(Suppl 1)
S68-S71
MissingFormLabel
- 96
Winterer G, Weinberger DR.
Genes, dopamine and cortical signal-to-noise ratio in schizophrenia.
Trends Neurosci.
2004;
27
((11))
683-690
MissingFormLabel
- 97
Xu TJ, Pandey SC.
Cellular localization of serotonin2A (5HT2A) receptors in the rat brain.
Brain Res Bull.
2000;
51
499-505
MissingFormLabel
- 98
Yang CR, Seamans JS.
Dopamine D1 receptor actions in layer V-VI rat prefrontal cortex neurons in vitro:
modulation of dendritic-somatic signal integration.
J Neurosci.
1996;
16
1922-1935
MissingFormLabel
- 99
Yuen EY, Jiang Q, Chen P, Gu Z, Feng J, Yan Z.
Serotonin 5-HT1A receptors regulate NMDA receptor channels through a microtubule-dependent
mechanism.
J Neurosci.
2005;
25
((23))
5488-5501
MissingFormLabel
- 100
Zahorodna A, Bobula B, Grzegorzewska M, Tokarski K, Hess G.
The influence of repeated administration of clozapine and haloperidol on the effects
of the activation of 5-HT(1A), 5-HT(2) and 5-HT(4) receptors in rat frontal cortex.
J Physiol Pharmacol.
2004;
55
((2))
371-379
MissingFormLabel
- 101
Zheng P, Zhang XX, Bunney BS, Shi WX.
Opposite modulation of cortical N-methyl-D-aspartate receptor-mediated responses by
low and high concentrations of dopamine.
Neuroscience.
1999;
91
((2))
527-535
MissingFormLabel
- 102
Zhong P, Yan Z.
Chronic antidepressant treatment alters serotonergic regulation of GABA transmission
in prefrontal cortical pyramidal neurons.
Neuroscience.
2004;
129
((1))
65-73
MissingFormLabel
- 103
Zhou FM, Hablitz JJ.
Activation of serotonin receptors modulates synaptic transmission in rat cerebral
cortex.
J Neurophysiol.
1999;
82
((6))
2989-2999
MissingFormLabel
Correspondence
N.C. Di PietroPhD
Brain Research Center
Department of Psychiatry
University of British Columbia
Koerner Pavilion
UBC Hospital
2211 Wesbrook Mall
Room F-241
Vancouver
BC. V6T 2R5
Canada
Email: ndipietro@gmail.com