Abstract
An optically active tripodal amine, (2S,6S)-2,6-bis(o-hydroxyphenyl)-1-(2-pyridylmethyl)piperidine, was proven to be a potent chiral catalyst
(1-5 mol%) for methanolytic asymmetric desymmetrization of cyclic meso-anhydrides to hemiesters. A good level of enantioselectivities (up to 81% ee) was
achieved for various substrates, some of which were reported to be poor substrates
for methanolysis using known chiral amines as catalysts.
Key words
chiral amine catalyst - cyclic meso-anhydrides - asymmetric desymmetrization - methanolysis - organocatalysis
References and Notes
<A NAME="RU01507ST-1">1</A>
Current address: Department of Chemistry, Graduate School of Science and Technology,
Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan. E-mail: irie@sci.kumamoto-u.ac.jp
<A NAME="RU01507ST-2A">2a</A>
Dalco PI.
Moisan L.
Angew. Chem. Int. Ed.
2001,
40:
3726
<A NAME="RU01507ST-2B">2b</A>
Jarvo ER.
Miller SJ.
Tetrahedron
2002,
58:
2481
<A NAME="RU01507ST-2C">2c</A>
Dalco PI.
Moisan L.
Angew. Chem. Int. Ed.
2004,
43:
5138
<A NAME="RU01507ST-2D">2d</A>
Berkessel A.
Grögger H.
Asymmetric Organocatalysis
Wiley-VCH;
Weinheim:
2005.
<A NAME="RU01507ST-2E">2e</A>
France S.
Guerin DJ.
Miller SJ.
Lectka T.
Chem. Rev.
2003,
103:
2985
<A NAME="RU01507ST-3">3</A>
Chen Y.
McDaid P.
Deng L.
Chem. Rev.
2003,
103:
2965
<A NAME="RU01507ST-4A">4a</A>
Hiratake J.
Yamamoto Y.
Oda J.
J. Chem. Soc., Chem. Commun.
1985,
1717
<A NAME="RU01507ST-4B">4b</A>
Hiratake J.
Inagaki M.
Yamamoto Y.
Oda J.
J. Chem. Soc., Perkin Trans. 1
1987,
1053
<A NAME="RU01507ST-4C">4c</A>
Aitken RA.
Gopal J.
Hirst JA.
J. Chem. Soc., Chem. Commun.
1988,
632
<A NAME="RU01507ST-4D">4d</A>
Bolm C.
Gerlach A.
Dinter CL.
Synlett
1999,
195
<A NAME="RU01507ST-4E">4e</A>
Bolm C.
Schiffers I.
Dinter CL.
Gerlach A.
J. Org. Chem.
2000,
65:
6984
<A NAME="RU01507ST-4F">4f</A>
Chen Y.
Tian S.-K.
Deng L.
J. Am. Chem. Soc.
2000,
122:
9542
<A NAME="RU01507ST-4G">4g</A>
Bolm C.
Schiffers I.
Atodiresei I.
Hackenberger CPR.
Tetrahedron: Asymmetry
2003,
14:
3455
<A NAME="RU01507ST-4H">4h</A>
Rodriguez B.
Rantanen T.
Bolm C.
Angew. Chem. Int. Ed.
2006,
45:
6924
<A NAME="RU01507ST-5">5</A>
Bolm et al. also devised a catalytic system with a stoichiometric amount of sacrificial
achiral amine.4e
<A NAME="RU01507ST-6">6</A>
Uozumi Y.
Yasoshima K.
Miyachi T.
Nagai S.-I.
Tetrahedron Lett.
2001,
42:
411
<A NAME="RU01507ST-7">7</A>
Honjo T.
Sano S.
Shiro M.
Nagao Y.
Angew. Chem. Int. Ed.
2005,
44:
5838
Various transition-metal-catalyzed asymmetric ring-opening reactions of cyclic meso-anhydrides were also reported:
<A NAME="RU01507ST-8A">8a</A>
Seebach D.
Jaeschke G.
Wang YM.
Angew. Chem., Int. Ed. Engl.
1995,
34:
2395
<A NAME="RU01507ST-8B">8b</A>
Shintani R.
Fu GC.
Angew. Chem. Int. Ed.
2002,
41:
1057
<A NAME="RU01507ST-8C">8c</A>
Bercot EA.
Rovis T.
J. Am. Chem. Soc.
2002,
124:
174
<A NAME="RU01507ST-8D">8d</A>
Bercot EA.
Rovis T.
J. Am. Chem. Soc.
2004,
126:
10248
For the related asymmetric desymmetrization of cyclic meso-anhydrides with stoichiometric
chiral alcohols and amines, see:
<A NAME="RU01507ST-8E">8e</A>
Ohshima M.
Mukaiyama T.
Chem. Lett.
1987,
377
<A NAME="RU01507ST-8F">8f</A>
Ohtani M.
Matsuura T.
Watanabe F.
Narisada M.
J. Org. Chem.
1991,
56:
4120
<A NAME="RU01507ST-8G">8g</A>
Theisen PD.
Heathcock CH.
J. Org. Chem.
1993,
58:
142
<A NAME="RU01507ST-8H">8h</A>
Hashimoto N.
Kawamura S.
Ishizuka T.
Kunieda T.
Tetrahedron Lett.
1996,
37:
9237
<A NAME="RU01507ST-8I">8i</A>
Jones IG.
Jones W.
North M.
Teijeira M.
Uriarte E.
Tetrahedron Lett.
1997,
38:
889
<A NAME="RU01507ST-8J">8j</A>
Hibbs DE.
Hursthouse MB.
Jones IG.
Jones W.
Malic KMA.
North M.
J. Org. Chem.
1999,
64:
5413
<A NAME="RU01507ST-8K">8k</A>
Evans AC.
Longbottom DA.
Matsuoka M.
Ley SV.
Synlett
2005,
646
<A NAME="RU01507ST-9">9</A>
Okamatsu T.
Irie R.
Katsuki T.
J. Organomet. Chem.
2007,
692:
645
For the representative related studies on the helical chirality induced by tripodal
tertiary amine ligands, see:
<A NAME="RU01507ST-10A">10a</A>
Canary JW.
Allen CS.
Castagnetto JM.
Wang Y.
J. Am. Chem. Soc.
1995,
117:
8484
<A NAME="RU01507ST-10B">10b</A>
Dai Z.
Xu X.
Canary JW.
Chirality
2005,
17:
S227
<A NAME="RU01507ST-11">11</A> The identical architecture was also reported for achiral N,N-bis(2-hydroxybenzyl)-2-picolylamine:
Vencato I.
Neves A.
Ceccato AS.
Horn A.
Acta Crystallogr., Sect. C
1996,
52:
949
<A NAME="RU01507ST-12A">12a</A>
Marcelli T.
van Maarseveen JH.
Hiemstra H.
Angew. Chem. Int. Ed.
2006,
45:
7496
<A NAME="RU01507ST-12B">12b</A>
Akiyama T.
Itoh J.
Fuchibe K.
Adv. Synth. Catal.
2006,
348:
999
<A NAME="RU01507ST-13">13</A>
Although we used the (R,R)-isomer of 1 in our previous report (ref. 8), this work was performed with (S,S)-1.
<A NAME="RU01507ST-14">14</A>
Typical Procedure for Catalytic Asymmetric Methanolysis of Cyclic meso-Anhydrides: To a solution or suspension of cyclic meso-anhydride (0.1 mmol) and 1 (1.8 mg, 5 µmol) in dist. toluene (1-2.5 mL) was added MeOH (20-81 µL, 0.5-2.0 mmol)
at the temperature specified in Table 1 and Table 2. After being stirred at the temperature
for 24 h, an aliquot of the reaction mixture was concentrated and subjected to 1H NMR analysis. The chemical yield was estimated from the ratio of the unreacted anhydride
and the hemiester produced, which were the only two components in the crude reaction
mixture. Then, whole the mixture was acidified with aq HCl (1 M, 1.0 mL) to extract
1 into the aqueous phase. The phases were separated and the product in the organic
layer was extracted with sat. NaHCO3 (2 × 1.0 mL), leaving the starting material in the organic layer. After the organic
layer was discarded, the aqueous layer was acidified with aq HCl (1 M, 2.0 mL) and
extracted with EtOAc (3 × 2.0 mL). The combined organic layer was dried over Na2SO4 and concentrated in vacuo to give the desired hemiester in almost pure form judged
by the 1H NMR analysis.
<A NAME="RU01507ST-15">15</A>
The conditions for the HPLC analysis of each compound are as follows: 3a: DAICEL CHIRALCELL AS-H, hexane-2-propanol-CF3COOH = 95:5:0.1, 0.3 mL/min. Carboxanilide of 3b: DAICEL CHIRALCELL AD-H, hexane-2-pro-
panol = 90:10, 0.5 mL/min. Carboxanilide of 3c: DAICEL CHIRALCELL OD-H, hexane-2-propanol = 90:10, 0.5 mL/min. p-Bromophenyl ester of 3d: DAICEL CHIRALCELL OD-H, hexane-2-propanol = 98:2, 0.5 mL/min. p-Bromo-phenyl ester of 3e: DAICEL CHIRALCELL OD-H, hexane-2-propanol = 98:2, 0.5 mL/min. Carboxanilide of 3f: DAICEL CHIRALCELL OD-H, hexane-2-propanol = 92:8, 0.5 mL/min. 3g: DAICEL CHIRALCELL AD-H, hexane-2-propanol-CF3COOH = 90:10:0.1, 0.5 mL/min. Carboxanilide of 3h: DAICEL CHIRALCELL AS-H, hexane-2-propanol = 70:30, 0.5 mL/min. Carboxanilide of
3i: DAICEL CHIRALCELL OJ-H, hexane-2-propanol = 90:10, 0.5 mL/min.
<A NAME="RU01507ST-16">16</A>
Mori K.
Tomioka H.
Fukuyo E.
Yanagi K.
Liebigs Ann. Chem.
1993,
671
<A NAME="RU01507ST-17">17</A>
Bigi F.
Carloni S.
Maggi R.
Mazzacani A.
Sartori G.
Tanzi G.
J. Mol. Catal. A: Chem.
2002,
182-183:
533
<A NAME="RU01507ST-18">18</A>
The authors are grateful to a reviewer for useful suggestions about the mechanism
of this reaction that is now under investigation in our laboratory.