References and Notes
<A NAME="RG11407ST-1A">1a</A>
Terrier F.
Nucleophilic Aromatic Displacement - The Influence of the Nitro Group
Verlag Chemie;
Weinheim:
1991.
<A NAME="RG11407ST-1B">1b</A>
Chupakhin ON.
Charushin VN.
van der Plas HC.
Nucleophilic Aromatic Substitution of Hydrogen
Academic Press;
San Diego:
1994.
<A NAME="RG11407ST-1C">1c</A>
Mąkosza M.
Russ. Chem. Bull.
1996,
45:
491
<A NAME="RG11407ST-2A">2a</A>
Mąkosza M.
Winiarski J.
Acc. Chem. Res.
1987,
20:
282
<A NAME="RG11407ST-2B">2b</A>
Mąkosza M.
Wojciechowski K.
Liebigs Ann./Recl.
1997,
1805
<A NAME="RG11407ST-2C">2c</A>
Mąkosza M.
Kwast A.
J. Phys. Org. Chem.
1998,
11:
341
<A NAME="RG11407ST-3">3</A>
Suwiński J.
Świerczek K.
Tetrahedron
2001,
57:
1639
<A NAME="RG11407ST-4A">4a</A>
Mąkosza M.
Staliński K.
Pol. J. Chem.
1999,
73:
151
<A NAME="RG11407ST-4B">4b</A>
Mąkosza M.
Staliński K.
Tetrahedron
1998,
54:
8797
<A NAME="RG11407ST-4C">4c</A>
Mąkosza M.
Staliński K.
Chem. Eur. J.
2001,
7:
2025
<A NAME="RG11407ST-4D">4d</A>
Adam W.
Mąkosza M.
Zhao CG.
Surowiec M.
J. Org. Chem.
2000,
65:
1099
<A NAME="RG11407ST-5A">5a</A>
Wróbel Z.
Tetrahedron Lett.
1997,
38:
4913
<A NAME="RG11407ST-5B">5b</A>
Wróbel Z.
Tetrahedron
1998,
54:
2607
<A NAME="RG11407ST-6">6</A>
Wróbel Z.
Eur. J. Org. Chem.
2000,
521
<A NAME="RG11407ST-7">7</A>
Wróbel Z.
Pol. J. Chem.
1998,
72:
2384
<A NAME="RG11407ST-8">8</A>
Wróbel Z.
Synlett
2004,
1929
<A NAME="RG11407ST-9A">9a</A>
Wohl A.
Aue W.
Ber. Dtsch. Chem. Ges.
1901,
34:
2442
<A NAME="RG11407ST-9B">9b</A>
Wohl A.
Ber. Dtsch. Chem. Ges.
1903,
36:
4135
<A NAME="RG11407ST-9C">9c</A>
Serebryanyi SB.
Ukr. Khim. Zh. (Russ. Ed.)
1955,
21:
350
<A NAME="RG11407ST-10A">10a</A>
Stern MK.
Hileman FD.
Bashkin JK.
J. Am. Chem. Soc.
1992,
114:
9237
<A NAME="RG11407ST-10B">10b</A>
Beska E,
Toman P,
Fiedler K,
Hronec M, and
Pinter J. inventors; US Patent 6388136.
<A NAME="RG11407ST-11">11</A>
Lipilin DL.
Churakov AM.
Ioffe SL.
Strelenko YA.
Tartakowsky VA.
Eur. J. Org. Chem.
1999,
29
<A NAME="RG11407ST-12">12</A>
Lemek T.
Mąkosza M.
Stephenson DS.
Mayr H.
Angew. Chem. Int. Ed.
2003,
42:
2793
<A NAME="RG11407ST-13">13</A>
Bażej S.
Kwast A.
Mąkosza M.
Tetrahedron Lett.
2004,
45:
3193
<A NAME="RG11407ST-14A">14a</A>
Bartoli G.
Rosini G.
Synthesis
1976,
270
<A NAME="RG11407ST-14B">14b</A>
Bartoli G.
Leardini R.
Medici A.
Rosini G.
J. Chem. Soc., Perkin Trans. 1
1978,
692
<A NAME="RG11407ST-15">15</A>
Melting points are uncorrected. 1H and 13C NMR spectra were recorded on a Varian Mercury 400 instrument (400 MHz for 1H NMR and 100 MHz for 13C NMR spectra) in CDCl3. Chemical shifts (δ) are expressed in ppm referred to TMS, and coupling constants
are given in Hz. 15N GHMBC experiment was performed on a Bruker 500 instrument in CDCl3 at 273 K. Mass spectra (EI, 70 eV) were obtained on an AMD-604 spectrometer. Silica
gel Merck 60 (230-400 mesh) was used for column chromatography.
2-Chloro-4-trifluoromethylonitrobenzene
[20]
(2d) and 4-chloro-2-methoxynitrobenzene
[21]
(2e) were obtained according to the literature. All other reagents are commercially available.
Preparation of 2-Nitroso-
N
-arylanilines 3a-i; General Procedure
To a cooled solution of t-BuOK (6 mmol, 672 mg) in DMF (2 mL) was added dropwise at -60 °C a solution of aniline
1 (2 mmol) in DMF (1 mL) and nitroarene 2 (2 mmol) in DMF (1 mL). The mixture was stirred at this temperature for 2-5 min,
and then a cooled mixture of AcOH (1.5 mL) and DMF (1.5 mL) was added in one portion.
The cooling bath was removed and the mixture was allowed to reach the ambient temperature,
then it was poured into H2O (ca. 50 mL) and extracted with EtOAc. The extract was washed with H2O and brine, and dried with Na2SO4. After evaporation, the crude product mixture was subjected to column chromatography
(SiO2, hexane-benzene) to obtain products 3a-i. The representative examples of 3 are described below.
3a: Brown solid; mp 124-125 °C. 1H NMR: δ = 7.09 (dd, J = 1.4, 10.2 Hz, 1 H), 7.05 (d, J = 1.7, 8.8 Hz, 1 H), 7.17-7.24 (m, 2 H), 7.39-7.45 (m, 2 H), 8.68 (br s, 1 H), 11.82
(br s, 1 H). 13C NMR: δ = 114.0, 119.1, 126.1, 130.0, 132.2, 135.0, 140.4 (br), 144.8, 154.9, one
signal not observed. MS (EI): m/z (%) = 268 (7), 266 (11), 251 (66), 249 (100), 237 (18), 235 (26), 201 (22). HRMS
(EI): m/z [M]+ calcd for C12H8ON2
35Cl2: 266.0014; found: 266.0024.
3d: Brown solid; mp 96-97 °C (hexane-benzene). 1H NMR: δ = 2.38 (s, 3 H), 6.93 (d, J = 8.6 Hz, 1 H), 7.05 (d, J = 2.0 Hz, 1 H), 7.13 (br d, J = 8.2 Hz, 2 H), 7.23 (br d, J = 8.2 Hz, 2 H), 8.67 (br s, 1 H), 12.08 (br s, 1 H). 13C NMR: δ = 114.4, 118.5, 120.2, 124.9, 130.4, 133.4, 136.9, 141.8 (very br), 144.6,
154.9, one signal not observed. MS (EI): m/z (%) = 245 (6), 231 (42), 229 (100), 214 (22), 180 (25). HRMS (LSI): m/z [M + H]+ calcd for C13H12ON2
35Cl: 247.0632; found: 247.0621.
3f: Brown solid; mp 106-107 °C. 1H NMR (500 MHz, CDCl3, -15 °C): δ = 2.37 (s, 3 H), 3.76 (s, 3 H), 6.35 (d, J = 2.1 Hz, 1 H), 6.57 (dd, J = 2.1, 9.2 Hz, 1 H), 7.17-7.25 (m, 4 H), 8.48 (d, J = 9.2 Hz, 1 H), 12.97 (br s, 1 H). 13C NMR: δ = 20.9, 55.7, 93.5, 109.3, 124.7, 130.2, 133.9, 136.4, 137.7, 142.4, 153.6,
167.0. 15N NMR (GHMBC, CDCl3, δ relative to MeNO2, 273 K): δ = -286.5 (N=O), 334 (J
NH = 91.9 Hz, NH). MS (EI): m/z (%) = 242 (16), 241 (15), 225 (100), 210 (15), 196 (15), 182 (21). HRMS (EI): m/z [M]+ calcd for C14H14O2N2: 242.1055; found: 242.1051.
Reduction of 3d with Zn/AcOH: To a solution of 2-nitroso-N-(4-tolyl)aniline 3d (0.15 mmol, 37.2 mg) in AcOH (1 mL), powdered Zn (150 mg) was added and the mixture
was stirred at ambient temperature, while monitored by TLC. After the substrate had
disappeared (ca. 1.5 h), the mixture was diluted with EtOAc (10 mL), filtered, washed
with H2O, sat. NaHCO3 and H2O, and then dried with Na2SO4. The solvent was evaporated and the crude product was purified by column chromatography
(SiO2, hexane-EtOAc, 5:1) to give 4a (26.2 mg, 75%).
4a: Brown solid; mp 65-66 °C(hexane) [Lit.
[22]
66.5-67.5 °C (PE)]. 1H NMR: δ = 2.68 (s, 3 H), 3.64 (br s, 2 H), 5.10 (br s, 1 H), 6.69 (d, J = 8.4 Hz, 1 H), 6.72-6.76 (m, 2 H), 6.89 (dd, J = 2.3, 8.4 Hz, 1 H), 7.04-7.08 (m, 3 H). 13C NMR: δ = 20.6, 116.9, 117.0, 121.7, 123.7, 123.8, 129.9, 130.0, 131.5, 138.6, 141.3.
MS (EI): m/z (%) = 232 (100), 217 (59). HRMS (EI): m/z [M]+ calcd for C13H13N2
35Cl: 232.0767; found: 232.0772.
Catalytic Hydrogenation of 3d: 2-Nitroso-N-(4-tolyl)aniline 3d (0.22 mmol, 55 mg), suspended (partially soluble) in MeOH (1 mL), Et3N (0.44 mmol, 44 mg) and Pd/C (10%, 25 mg) were stirred under H2 at r.t. for 30 min. The catalyst was filtered off and the solution was evaporated
to dryness. The residue was diluted with EtOAc (10 mL) and H2O (5 mL), and the organic layer was separated, washed with H2O and dried with Na2SO4. After evaporation of the solvents, the crude product was purified by column chromatography
(SiO2, hexane-EtOAc, 4:1) to deliver 4b (37 mg, 84%).
4b: Brown solid; mp 77 °C(hexane). 1H NMR: δ = 2.26 (s, 3 H), 3.67 (br s, 2 H), 5.26 (br s, 1 H), 6.65 (m, 2 H), 6.71-6.76
(m, 1 H), 6.78 (dd, J = 1.2, 7.8 Hz, 1 H), 6.95-7.00 (m, 1 H), 7.00-7.05 (m, 2 H), 7.08 (dd, J = 1.4, 7.8 Hz, 1 H). 13C NMR: δ = 20.4, 115.8, 116.1, 119.1, 123.8, 125.0, 128.8, 129.4, 129.8, 141.3, 142.62.
MS (EI): m/z (%) = 198 (100), 183 (64), 91 (18). HRMS (EI): m/z [M]+ calcd for C13H14N2: 198.1157; found: 198.1147.
Cyclization of 3a to 2,7-Dichlorophenazine (
5): 2-Nitroso-N-(4-chlorophenyl)aniline 3a (0.1 mmol, 25 mg) in AcOH (3 mL) was refluxed for 1.5 h. After cooling down, the
mixture was diluted with H2O and the precipitated crude product was filtered off. Recrystallization from EtOH
gave pure 5 (20 mg (80%).
5: Pale yellow solid; mp 265-266 °C (Lit.
[23]
266-268 °C). MS (EI): m/z (%) = 250 (64), 248 (100), 213 (33).
Condensation of 3a with Methyl Malonate: 2-Nitroso-N-(4-chlorophenyl)aniline 3a (0.067 mmol, 18 mg), methyl malonate (0.14 mmol, 18 mg) and K2CO3 (75 mg) were stirred in MeCN (1 mL) at r.t. for 30 min. The mixture was diluted with
MeCN, filtered and evaporated. The crude product was purified by column chromatography
(SiO2, hexane-EtOAc, 5:1) to obtain pure 6 (20 mg, 85%).
6: Yellowish crystals; mp 160-161 °C. 1H NMR: δ = 4.03 (s, 3 H), 6.71 (d, J = 2.2 Hz, 1 H), 7.23-7.27 (m, 2 H), 7.35 (dd, J = 2.2, 8.6 Hz, 1 H), 7.60-7.65 (m, 2 H), 7.92 (d, J = 8.6 Hz, 1 H). 13C NMR: δ = 55.3, 115.2, 125.2, 129.5, 130.2, 130.9, 132.1, 132.8, 135.5, 136.3, 138.9,
148.8, 151.8, 163.4. MS (EI): m/z (%) = 350 (31), 348 (48), 263 (67), 261 (100), 226 (24), 191 (21). HRMS (EI): m/z [M]+ calcd for C16H10N2O3
35Cl2: 348.0068; found: 348.0076.
<A NAME="RG11407ST-16A">16a</A>
Fasani E.
Pietra S.
Albini A.
Heterocycles
1992,
33:
573
<A NAME="RG11407ST-16B">16b</A>
Fasani E.
Mella M.
Albini A.
J. Chem. Soc., Perkin Trans. 1
1992,
2689
<A NAME="RG11407ST-16C">16c</A>
Titova SP.
Arinich AK.
Gorelik MV.
J. Org. Chem. USSR (Eng. Transl.)
1986,
1407
<A NAME="RG11407ST-16D">16d</A>
Okubo M.
Inatomi Y.
Taniguchi N.
Imamura K.
Bull. Chem. Soc. Jpn.
1988,
61:
3581
<A NAME="RG11407ST-17">17</A>
Holschbach MH.
Sanz D.
Claramunt RM.
Infantes L.
Motherwell S.
Raithby PR.
Jimeno ML.
Herrero D.
Alkorta I.
Jagerovic N.
Elguero J.
J. Org. Chem.
2003,
68:
8831
<A NAME="RG11407ST-18">18</A>
Urbelis G.
Susvilo I.
Tumkevicius S.
J. Mol. Model.
2007,
13:
219
<A NAME="RG11407ST-19">19</A>
Buckley PD.
Furness AR.
Jolley KW.
Pinder DN.
Austr. J. Chem.
1974,
27:
21
<A NAME="RG11407ST-20">20</A>
Tsui K.
Nakamura K.
Konishi N.
Okumura H.
Matsuo M.
Chem. Pharm. Bull.
1992,
40:
2399
<A NAME="RG11407ST-21">21</A>
Barluenga J.
Fananas FJ.
Sanz R.
Fernandez Y.
Chem. Eur. J.
1965,
397
<A NAME="RG11407ST-22">22</A>
Mangini A.
Gazz. Chim. Ital.
1935,
65:
1191
<A NAME="RG11407ST-23">23</A>
Vivian DL.
J. Am. Chem. Soc.
1951,
73:
457