Semin Respir Crit Care Med 2007; 28(3): 312-321
DOI: 10.1055/s-2007-981652
Copyright © 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Emerging and Unusual Gram-Negative Infections in Cystic Fibrosis

Jane C. Davies1 , 2 , Bruce K. Rubin3 , 4
  • 1Department of Pediatric Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
  • 2Department of Gene Therapy, Imperial College, London, United Kingdom
  • 3Department of Pediatrics, Physiology, and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
  • 4Department of Biomedical Engineering, Virginia Polytechnic Institute/Wake Forest University, North Carolina
Further Information

Publication History

Publication Date:
22 August 2007 (online)

ABSTRACT

People with cystic fibrosis (CF) have chronic airway infection and frequent exposure to antibiotics, which often leads to the emergence of resistant organisms. In addition to the development of multiresistance in common CF pathogens such as Pseudomonas aeruginosa, several newer, inherently resistant gram-negative species are becoming more common, including Burkholderia cepacia complex, Stenotrophomonas maltophilia, Achromobacter (Alcaligenes) xylosoxidans, certain Ralstonia species, and those within the new genus Pandoraea. Many of these are closely related and have similar phenotypes, making accurate laboratory identification challenging. Although their role in contributing to pulmonary disease in CF is not clear, some, such as those of the B. cepacia complex, are clearly linked to an adverse prognosis, and both treatment and infection control issues can pose a real challenge.

REFERENCES

  • 1 Davies J C. Pseudomonas aeruginosa in cystic fibrosis: pathogenesis and persistence.  Paediatr Respir Rev. 2002;  3 128-134
  • 2 Matsui H, Grubb B R, Tarran R et al.. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease.  Cell. 1998;  95 1005-1015
  • 3 Saiman L, Prince A. Pseudomonas aeruginosa pili bind to asialo GM1 which is increased on the surface of cystic fibrosis epithelial cells.  J Clin Invest. 1993;  92 1875-1880
  • 4 Pier G B, Grout M, Zaidi T S et al.. Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections.  Science. 1996;  271 64-67
  • 5 Worlitzsch D, Tarran R, Ulrich M et al.. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients.  J Clin Invest. 2002;  109 317-325
  • 6 Henke M O, Renner A, Huber R M, Seeds M C, Rubin B K. MUC5AC and MUC5B mucins are decreased in cystic fibrosis airway secretions.  Am J Respir Cell Mol Biol. 2004;  31 86-91
  • 7 Ratjen F. Diagnosing and managing infection in CF.  Paediatr Respir Rev. 2006;  7 S151-S153
  • 8 Corey M, Farewell V. Determinants of mortality from cystic fibrosis in Canada, 1970-1989.  Am J Epidemiol. 1996;  143 1007-1017
  • 9 Coenye T, LiPuma J J. Molecular epidemiology of Burkholderia species.  Front Biosci. 2003;  8 E55-E67
  • 10 LiPuma J J, Spilker T, Gill L H, Campbell III P W, Liu L, Mahenthiralingam E. Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis.  Am J Respir Crit Care Med. 2001;  164 92-96
  • 11 McMenamin J D, Zaccone T M, Coenye T, Vandamme P, LiPuma J J. Misidentification of Burkholderia cepacia in US cystic fibrosis treatment centers: an analysis of 1,051 recent sputum isolates.  Chest. 2000;  117 1661-1665
  • 12 http://go.to/cepacia
  • 13 Pegues D A, Carson L A, Tablan O C et al.. Acquisition of Pseudomonas cepacia at summer camps for patients with cystic fibrosis. Summer Camp Study Group.  J Pediatr. 1994;  124 694-702
  • 14 Sun L, Jiang R Z, Steinbach S et al.. The emergence of a highly transmissible lineage of cbl + Pseudomonas (Burkholderia) cepacia causing CF centre epidemics in North America and Britain.  Nat Med. 1995;  1 661-666
  • 15 Mahenthiralingam E, Simpson D A, Speert D P. Identification and characterization of a novel DNA marker associated with epidemic Burkholderia cepacia strains recovered from patients with cystic fibrosis.  J Clin Microbiol. 1997;  35 808-816
  • 16 Chen J S, Witzmann K A, Spilker T, Fink R J, LiPuma J J. Endemicity and inter-city spread of Burkholderia cepacia genomovar III in cystic fibrosis.  J Pediatr. 2001;  139 643-649
  • 17 Holmes A, Nolan R, Taylor R et al.. An epidemic of Burkholderia cepacia transmitted between patients with and without cystic fibrosis.  J Infect Dis. 1999;  179 1197-1205
  • 18 Sajjan U S, Yang J H, Hershenson M B, LiPuma J J. Intracellular trafficking and replication of Burkholderia cenocepacia in human cystic fibrosis airway epithelial cells.  Cell Microbiol. 2006;  8 1456-1466
  • 19 Saini L S, Galsworthy S B, John M A, Valvano M A. Intracellular survival of Burkholderia cepacia complex isolates in the presence of macrophage cell activation.  Microbiology. 1999;  145 3465-3475
  • 20 Lamothe J, Huynh K K, Grinstein S, Valvano M A. Intracellular survival of Burkholderia cenocepacia in macrophages is associated with a delay in the maturation of bacteria-containing vacuoles.  Cell Microbiol. 2007;  9 40-53
  • 21 Shaw D, Poxton I R, Govan J R. Biological activity of Burkholderia (Pseudomonas) cepacia lipopolysaccharide.  FEMS Immunol Med Microbiol. 1995;  11 99-106
  • 22 Conway B A, Venu V, Speert D P. Biofilm formation and acyl homoserine lactone production in the Burkholderia cepacia complex.  J Bacteriol. 2002;  184 5678-5685
  • 23 Lessie T G, Hendrickson W, Manning B D, Devereux R. Genomic complexity and plasticity of Burkholderia cepacia .  FEMS Microbiol Lett. 1996;  144 117-128
  • 24 Moore R A, Hancock R E. Involvement of outer membrane of Pseudomonas cepacia in aminoglycoside and polymyxin resistance.  Antimicrob Agents Chemother. 1986;  30 923-926
  • 25 Aronoff S C. Derepressed beta-lactamase production as a mediator of high-level beta-lactam resistance in Pseudomonas cepacia .  Pediatr Pulmonol. 1988;  4 72-77
  • 26 Wigfield S M, Rigg G P, Kavari M, Webb A K, Matthews R C, Burnie J P. Identification of an immunodominant drug efflux pump in Burkholderia cepacia .  J Antimicrob Chemother. 2002;  49 619-624
  • 27 Tablan O C, Martone W J, Doershuk C F et al.. Colonization of the respiratory tract with Pseudomonas cepacia in cystic fibrosis: risk factors and outcomes.  Chest. 1987;  91 527-532
  • 28 Aris R M, Routh J C, LiPuma J J, Heath D G, Gilligan P H. Lung transplantation for cystic fibrosis patients with Burkholderia cepacia complex: survival linked to genomovar type.  Am J Respir Crit Care Med. 2001;  164 2102-2106
  • 29 Soni R, Marks G, Henry D A et al.. Effect of Burkholderia cepacia infection in the clinical course of patients with cystic fibrosis: a pilot study in a Sydney clinic.  Respirology. 2002;  7 241-245
  • 30 Kalish L A, Waltz D A, Dovey M et al.. Impact of Burkholderia dolosa on lung function and survival in cystic fibrosis.  Am J Respir Crit Care Med. 2006;  173 421-425
  • 31 Ledson M J, Gallagher M J, Corkill J E, Hart C A, Walshaw M J. Cross infection between cystic fibrosis patients colonised with Burkholderia cepacia .  Thorax. 1998;  53 432-436
  • 32 Golini G, Cazzola G, Fontana R. Molecular epidemiology and antibiotic susceptibility of Burkholderia cepacia-complex isolates from an Italian cystic fibrosis centre.  Eur J Clin Microbiol Infect Dis. 2006;  25 175-180
  • 33 Fass R J, Barnishan J, Solomon M C, Ayers L W. In vitro activities of quinolones, beta-lactams, tobramycin, and trimethoprim-sulfamethoxazole against nonfermentative gram-negative bacilli.  Antimicrob Agents Chemother. 1996;  40 1412-1418
  • 34 Aaron S D, Ferris W, Henry D A, Speert D P, Macdonald N E. Multiple combination bactericidal antibiotic testing for patients with cystic fibrosis infected with Burkholderia cepacia .  Am J Respir Crit Care Med. 2000;  161 1206-1212
  • 35 Middleton P G, Kidd T J, Williams B. Combination aerosol therapy to treat Burkholderia cepacia complex.  Eur Respir J. 2005;  26 305-308
  • 36 Goss C H, Otto K, Aitken M L, Rubenfeld G D. Detecting Stenotrophomonas maltophilia does not reduce survival of patients with cystic fibrosis.  Am J Respir Crit Care Med. 2002;  166 356-361
  • 37 Karpati F, Malmborg A S, Alfredsson H, Hjelte L, Strandvik B. Bacterial colonisation with Xanthomonas maltophilia: a retrospective study in a cystic fibrosis patient population.  Infection. 1994;  22 258-263
  • 38 Graff G R, Burns J L. Factors affecting the incidence of Stenotrophomonas maltophilia isolation in cystic fibrosis.  Chest. 2002;  121 1754-1760
  • 39 Elting L S, Khardori N, Bodey G P, Fainstein V. Nosocomial infection caused by Xanthomonas maltophilia: a case-control study of predisposing factors.  Infect Control Hosp Epidemiol. 1990;  11 134-138
  • 40 Carmeli Y, Samore M H. Comparison of treatment with imipenem vs. ceftazidime as a predisposing factor for nosocomial acquisition of Stenotrophomonas maltophilia: a historical cohort study.  Clin Infect Dis. 1997;  24 1131-1134
  • 41 Vu-Thien H, Moissenet D, Valcin M, Dulot C, Tournier G, Garbarg-Chenon A. Molecular epidemiology of Burkholderia cepacia, Stenotrophomonas maltophilia, and Alcaligenes xylosoxidans in a cystic fibrosis center.  Eur J Clin Microbiol Infect Dis. 1996;  15 876-879
  • 42 Denton M, Todd N J, Kerr K G, Hawkey P M, Littlewood J M. Molecular epidemiology of Stenotrophomonas maltophilia isolated from clinical specimens from patients with cystic fibrosis and associated environmental samples.  J Clin Microbiol. 1998;  36 1953-1958
  • 43 Friedman N D, Korman T M, Fairley C K, Franklin J C, Spelman D W. Bacteraemia due to Stenotrophomonas maltophilia: an analysis of 45 episodes.  J Infect. 2002;  45 47-53
  • 44 Goss C H, Mayer-Hamblett N, Aitken M L, Rubenfeld G D, Ramsey B W. Association between Stenotrophomonas maltophilia and lung function in cystic fibrosis.  Thorax. 2004;  59 955-959
  • 45 Gladman G, Connor P J, Williams R F, David T J. Controlled study of Pseudomonas cepacia and Pseudomonas maltophilia in cystic fibrosis.  Arch Dis Child. 1992;  67 192-195
  • 46 Demko C A, Stern R C, Doershuk C F. Stenotrophomonas maltophilia in cystic fibrosis: incidence and prevalence.  Pediatr Pulmonol. 1998;  25 304-308
  • 47 Marchac V, Equi A, Le Bihan-Benjamin C, Hodson M, Bush A. Case-control study of Stenotrophomonas maltophilia acquisition in cystic fibrosis patients.  Eur Respir J. 2004;  23 98-102
  • 48 Jones R N. Resistance patterns among nosocomial pathogens: trends over the past few years.  Chest. 2001;  119 397S-404S
  • 49 Zhang L, Li X Z, Poole K. Fluoroquinolone susceptibilities of efflux-mediated multidrug-resistant Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Burkholderia cepacia .  J Antimicrob Chemother. 2001;  48 549-552
  • 50 Babalova M, Blahova J, Lesicka-Hupkova M, Krcmery Sr V, Kubonova K. Transfer of ceftazidime and aztreonam resistance from nosocomial strains of Xanthomonas (Stenotrophomonas) maltophilia to a recipient strain of Pseudomonas aeruginosa ML-1008.  Eur J Clin Microbiol Infect Dis. 1995;  14 925-927
  • 51 Blahova J, Kralikova K, Krcmery Sr V, Chmelarova E, Torsova V. Two nosocomial strains of Stenotrophomonas maltophilia transferring antibiotic resistance to Proteus mirabilis P-38 recipient strain.  J Chemother. 1998;  10 22-24
  • 52 Carroll K C, Cohen S, Nelson R et al.. Comparison of various in vitro susceptibility methods for testing Stenotrophomonas maltophilia .  Diagn Microbiol Infect Dis. 1998;  32 229-235
  • 53 Qamruddin A O, Alkawash M A, Soothill J S. Antibiotic susceptibility of Stenotrophomonas maltophilia in the presence of lactoferrin.  Antimicrob Agents Chemother. 2005;  49 4425-4426
  • 54 Alkawash M, Head M, Alshami I, Soothill J S. The effect of human lactoferrin on the MICs of doxycycline and rifampicin for Burkholderia cepacia and Pseudomonas aeruginosa strains.  J Antimicrob Chemother. 1999;  44 385-387
  • 55 Clermont D, Harmant C, Bizet C. Identification of strains of Alcaligenes and Agrobacterium by a polyphasic approach.  J Clin Microbiol. 2001;  39 3104-3109
  • 56 Wellinghausen N, Wirths B, Poppert S. Fluorescence in situ hybridization for rapid identification of Achromobacter xylosoxidans and Alcaligenes faecalis recovered from cystic fibrosis patients.  J Clin Microbiol. 2006;  44 3415-3417
  • 57 Liu L, Coenye T, Burns J L, Whitby P W, Stull T L, LiPuma J J. Ribosomal DNA-directed PCR for identification of Achromobacter (Alcaligenes) xylosoxidans recovered from sputum samples from cystic fibrosis patients.  J Clin Microbiol. 2002;  40 1210-1213
  • 58 Tan K, Conway S P, Brownlee K G, Etherington C, Peckham D G. Alcaligenes infection in cystic fibrosis.  Pediatr Pulmonol. 2002;  34 101-104
  • 59 Ronne Hansen C, Pressler T, Hoiby N, Gormsen M. Chronic infection with Achromobacter xylosoxidans in cystic fibrosis patients: a retrospective case control study.  J Cyst Fibros. 2006;  5 245-251
  • 60 Krzewinski J W, Nguyen C D, Foster J M, Burns J L. Use of random amplified polymorphic DNA PCR to examine epidemiology of Stenotrophomonas maltophilia and Achromobacter (Alcaligenes) xylosoxidans from patients with cystic fibrosis.  J Clin Microbiol. 2001;  39 3597-3602
  • 61 Gomez-Cerezo J, Suarez I, Rios J J et al.. Achromobacter xylosoxidans bacteremia: a 10-year analysis of 54 cases.  Eur J Clin Microbiol Infect Dis. 2003;  22 360-363
  • 62 Saiman L, Chen Y, Tabibi S et al.. Identification and antimicrobial susceptibility of Alcaligenes xylosoxidans isolated from patients with cystic fibrosis.  Clin Microbiol. 2001;  39 3942-3945
  • 63 Bergogne-Berezin E, Towner K J. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features.  Clin Microbiol Rev. 1996;  9 148-165
  • 64 Coenye T, Goris J, Spilker T, Vandamme P, LiPuma J J. Characterization of unusual bacteria isolated from respiratory secretions of cystic fibrosis patients and description of Inquilinus limosus gen. nov., sp. nov.  J Clin Microbiol. 2002;  40 2062-2069
  • 65 Forster D H, Daschner F D. Acinetobacter species as nosocomial pathogens.  Eur J Clin Microbiol Infect Dis. 1998;  17 73-77
  • 66 Rahal J J, Urban C. Acinetobacter .  Semin Respir Crit Care Med. 2000;  21 341-348
  • 67 Go E S, Urban C, Burns J et al.. Clinical and molecular epidemiology of Acinetobacter infections sensitive only to polymyxin B and sulbactam.  Lancet. 1994;  344 1329-1332
  • 68 Coenye T, Falsen E, Hoste B et al.. Description of Pandoraea gen. nov. with Pandoraea apista sp. nov., Pandoraea pulmonicola sp. nov., Pandoraea pnomenusa sp. nov., Pandoraea sputorum sp. nov. and Pandoraea norimbergensis comb. nov.  Int J Syst Evol Microbiol. 2000;  50 887-899
  • 69 Moore J E, Reid A, Millar B C et al.. Pandoraea apista isolated from a patient with cystic fibrosis: problems associated with laboratory identification.  Br J Biomed Sci. 2002;  59 164-166
  • 70 Yabuuchi E, Kosako Y, Yano I, Hotta H, Nishiuchi Y. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. Nov.: proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. Nov., Ralstonia solanacearum (Smith 1896) comb. Nov. and Ralstonia eutropha (Davis 1969) comb. Nov.  Microbiol Immunol. 1995;  39 897-904
  • 71 Labarca J A, Trick W E, Peterson C L et al.. A multistate nosocomial outbreak of Ralstonia pickettii colonization associated with an intrinsically contaminated respiratory care solution.  Clin Infect Dis. 1999;  29 1281-1286
  • 72 Stelzmueller I, Biebl M, Wiesmayr S et al.. Ralstonia pickettii: innocent bystander or a potential threat?.  Clin Microbiol Infect. 2006;  12 99-101
  • 73 Coenye T, Goris J, De Vos P, Vandamme P, LiPuma J J. Classification of Ralstonia pickettii-like isolates from the environment and clinical samples as Ralstonia insidiosa sp. nov.  Int J Syst Evol Microbiol. 2003;  53 1075-1080
  • 74 Burns J L, Van Dalfsen J M, Shawar R M et al.. Effect of chronic intermittent administration of inhaled tobramycin on respiratory microbial flora in patients with cystic fibrosis.  J Infect Dis. 1999;  179 1190-1196
  • 75 Wellinghausen N, Essig A, Sommerburg O. Inquilinus limosus in patients with cystic fibrosis, Germany.  Emerg Infect Dis. 2005;  11 457-459
  • 76 Schmoldt S, Latzin P, Heesemann J, Griese M, Imhof A, Hogardt M. Clonal analysis of Inquilinus limosus isolates from six cystic fibrosis patients and specific serum antibody response.  J Med Microbiol. 2006;  55 1425-1433
  • 77 Chiron R, Marchandin H, Counil F et al.. Clinical and microbiological features of Inquilinus sp. isolates from five patients with cystic fibrosis.  J Clin Microbiol. 2005;  43 3938-3943
  • 78 Saiman L, Siegel J. Infection control recommendations for patients with cystic fibrosis: microbiology, important pathogens, and infection control practices to prevent patient-to-patient transmission.  Am J Infect Control. 2003;  31 S1-S62
  • 79 Ramsey B W. To cohort or not to cohort: how transmissible is Pseudomonas aeruginosa?.  Am J Respir Crit Care Med. 2002;  166 906-907
  • 80 Armstrong D S, Nixon G M, Carzino R et al.. Detection of a widespread clone of Pseudomonas aeruginosa in a pediatric cystic fibrosis clinic.  Am J Respir Crit Care Med. 2002;  166 983-987
  • 81 Speert D P, Campbell M E, Henry D A et al.. Epidemiology of Pseudomonas aeruginosa in cystic fibrosis in British Columbia, Canada.  Am J Respir Crit Care Med. 2002;  166 988-993
  • 82 Geddes D M. Of isolates and isolation: Pseudomonas aeruginosa in adults with cystic fibrosis.  Lancet. 2001;  358 522-523
  • 83 Davies G, McShane D, Davies J C, Bush A. Multiresistant Pseudomonas aeruginosa in a pediatric cystic fibrosis center: natural history and implications for segregation.  Pediatr Pulmonol. 2003;  35 253-256
  • 84 Duff A J. Psychological consequences of segregation resulting from chronic Burkholderia cepacia infection in adults with CF.  Thorax. 2002;  57 756-758

Jane C DaviesM.B.Ch.B. 

Department of Pediatric Respiratory Medicine, Royal Brompton Hospital

Sydney St., London SW3 6NP, UK

Email: j.c.davies@ic.ac.uk

    >