References and Notes
<A NAME="RD37106ST-1">1</A>
Anastas P.
Williamson T.
Green Chemistry, Frontiers in Benign Chemical Synthesis and Procedures
Oxford Science Publications;
Oxford:
1998.
<A NAME="RD37106ST-2">2</A>
Wender PA.
Handy SL.
Wright DL.
Chem. Ind. (London)
1997,
765
<A NAME="RD37106ST-3">3</A>
Faber K.
Stueckler H.
Kappe T.
J. Heterocycl. Chem.
1984,
21:
1177
<A NAME="RD37106ST-4">4</A>
Yamada N.
Kadowaki S.
Takahashi K.
Umezu K.
Biochem. Pharmacol.
1992,
44:
1211
<A NAME="RD37106ST-5">5</A>
Akhmed Khodzhaeva KhS.
Bessonova IA.
Dokl. Akad. Nauk. SSSR
1982,
34 ; Chem. Abstr. 1983, 98, 83727q
<A NAME="RD37106ST-6">6</A>
Nesterova IN.
Alekseeva LM.
Andreeva LM.
Andreeva NI.
Golovira SM.
Gvanik VG.
Khim.-Farm. Zh.
1995,
29:
31 ; Chem. Abstr. 1996, 124, 117128t
<A NAME="RD37106ST-7">7</A>
Mohamed EA.
Chem. Pap.
1994,
48:
261 ; Chem. Abstr. 1995, 123, 9315x
<A NAME="RD37106ST-8">8</A>
Ramesh M.
Mohan PS.
Shanmugam P.
Tetrahedron
1984,
40:
4041
<A NAME="RD37106ST-9A">9a</A>
Weinreb SM.
Comprehensive Organic Synthesis
Vol 5:
Trost BM.
Fleming I.
Pergamon;
Oxford:
1991.
p.401
<A NAME="RD37106ST-9B">9b</A>
Boger DL.
Weinreb SM.
Hetero Diels-Alder Methodology in Organic Synthesis
Academic;
San Diego:
1987.
Chap. 2 and 9.
<A NAME="RD37106ST-10A">10a</A>
Cabral J.
Laszlo P.
Montaufier MT.
Tetrahedron Lett.
1988,
29:
547
<A NAME="RD37106ST-10B">10b</A>
Weinreb SM.
In Comprehensive Organic Synthesis
Vol. 5:
Trost BM.
Fleming I.
Pergamon;
Oxford:
1991.
p.401-449
<A NAME="RD37106ST-10C">10c</A>
Babu G.
Perumal PT.
Tetrahedron Lett.
1998,
39:
3225
<A NAME="RD37106ST-10D">10d</A>
Yadav JS.
Reddy BVS.
Srinivas R.
Madhuri Ch.
Ramlingam T.
Synlett
2001,
240
<A NAME="RD37106ST-11">11</A>
Ma Y.
Qian C.
Xie M.
Sun J.
J. Org. Chem.
1999,
64:
6462
<A NAME="RD37106ST-12A">12a</A>
Das B.
Reddy MR.
Reddy VS.
Ramu R.
Chem. Lett.
2004,
33:
1526
<A NAME="RD37106ST-12B">12b</A>
Mahesh M.
Venkateswar Reddy C.
Srinivasa Reddy K.
Raju PKV.
Narayana Reddy VV.
Synth. Commun.
2004,
34:
4089
<A NAME="RD37106ST-12C">12c</A>
Reddy ChV.
Mahesh M.
Raju PKV.
Babu TR.
Reddy VVN.
Tetrahedron Lett.
2002,
43:
2657
<A NAME="RD37106ST-13">13</A>
More SV.
Sastry MNV.
Yao C.-F.
Synlett
2006,
1399
<A NAME="RD37106ST-14">14</A>
Wang Y.-G.
Lin X.-F.
Cui S.-L.
Synlett
2004,
1175
<A NAME="RD37106ST-15">15</A>
Spanedda MV.
Hoang VD.
Crousse B.
Delpon DB.
Begue J.-P.
Tetrahedron Lett.
2003,
44:
217
<A NAME="RD37106ST-16">16</A>
Kumar RS.
Nagarajan R.
Perumal PT.
Synthesis
2004,
949
<A NAME="RD37106ST-17">17</A>
Srinivas KVNS.
Das B.
Synlett
2004,
1715
<A NAME="RD37106ST-18">18</A>
Maiti G.
Kundu P.
Tetrahedron Lett.
2006,
47:
5733
<A NAME="RD37106ST-19A">19a</A>
Kamble VT.
Jamode VS.
Joshi NS.
Biradar AV.
Deshmukh RY.
Tetrahedron Lett.
2006,
47:
5573
<A NAME="RD37106ST-19B">19b</A>
Khan AT.
Choudhury LH.
Ghosh S.
J. Mol. Catal. A: Chem.
2006,
255:
230
<A NAME="RD37106ST-19C">19c</A>
Agnihotri G.
Misra AK.
Tetrahedron Lett.
2006,
47:
3653
<A NAME="RD37106ST-19D">19d</A>
Maheswara M.
Siddaiah V.
Damu GLV.
Rao CV.
ARKIVOC
2006,
(ii):
201
<A NAME="RD37106ST-19E">19e</A>
Bartoli G.
Boeglin J.
Bosco M.
Locatelli M.
Massaccesi M.
Melchiorre P.
Sambri L.
Adv. Synth. Catal.
2005,
347:
33
<A NAME="RD37106ST-19F">19f</A>
Kamble VT.
Bandgar BP.
Khobragade CN.
Gacche RN.
Lett. Org. Chem.
2006,
3:
658
<A NAME="RD37106ST-19G">19g</A>
Kamble VT.
Bandgar BP.
Joshi NS.
Muley DB.
Catal. Commun.
2007,
8:
498
<A NAME="RD37106ST-19H">19h</A>
Rudrawar S.
Besra RC.
Chakraborti AK.
Synthesis
2006,
2767
<A NAME="RD37106ST-19I">19i</A>
Khan AT.
Pravin T.
Choudhury LH.
Synthesis
2006,
2497
<A NAME="RD37106ST-20">20</A>
General Experimental Procedure
A mixture of the aniline (5 mmol), aldehyde (5 mmol), dihydropyran or dihydrofuran
(7 mmol), Mg(ClO4)2 (0.25 mmol, 5 mol%) in MeCN (2 mL) was stirred at r.t. for an appropriate time (Table
[1]
). After completion of the reaction, as indicated by TLC, the reaction mixture was
diluted with EtOAc (2 × 10 mL) and washed with H2O (2 × 10 mL) followed by brine (2 × 15 mL). The combined organic extracts were dried
over Na2SO4, concentrated in vacuo and purified by column chromatography on silica gel (Merck,
100-200 mesh; EtOAc-hexane, 1:9) to afford the pure pyrano- or furanoquinoline.
Spectral data of selected compounds:
Compound 4j: IR (KBr): 3325 cm-1. 1H NMR (200 MHz, CDCl3): δ = 1.35 (m, 1 H), 1.50 (m, 1 H), 1.65 (m, 1 H), 1.85 (m, 1 H), 2.15 (m, 1 H),
3.75 (m, 1 H), 3.90 (br s, 1 H), 4.15 (m, 1 H), 4.40 (d, J = 2.8 Hz, 1 H), 4.70 (d, J = 10.5 Hz, 1 H), 6.70 (t, J = 8.0 Hz, 1 H), 7.05 (dd, J = 8.0, 0.8 Hz, 1 H), 7.15 (dd, J = 8.0, 1.5 Hz, 1 H), 7.30-7.35 (m, 1 H), 7.40-7.45 (m, 2 H), 7.50-7.55 (m, 2 H).
MS: m/z = 311 [M+ + 1]. Anal. Calcd for C18H18N2O3: C, 69.66; H, 5.84; N, 9.02. Found: C, 69.64; H, 5.83; N, 9.01.
Compound 5j: IR (KBr): 3375 cm-1. 1H NMR (200 MHz, CDCl3): δ = 1.40-1.60 (m, 4 H), 2.10 (m, 1 H), 3.41 (m, 1 H), 3.55-3.70 (m, 2 H), 4.65
(d, J = 2.5 Hz, 1 H), 5.25 (d, J = 5.2 Hz, 1 H), 6.70 (t, J = 7.8 Hz, 1 H), 7.05 (dd, J = 7.8, 0.8 Hz, 1 H), 7.35-7.45 (m, 6 H). MS: m/z = 311 [M+ + 1].
Compound 4m: IR (KBr): 3315 cm-1. 1H NMR (200 MHz, CDCl3): δ = 1.72 (m, 1 H), 2.00 (m, 1 H), 2.45 (m, 1 H), 3.42-3.85 (m, 3 H), 4.08 (m, 1
H), 4.58 (d, J = 5.0 Hz, 1 H), 6.42 (d, J = 8.0 Hz, 1 H), 6.64 (d, J = 8.0 Hz, 1 H), 7.05 (t, J = 8.0 Hz, 1 H), 7.14 (d, J = 8.0 Hz, 1 H), 7.35 (s, 4 H). MS: m/z = 297 [M+ + 1]. Anal. Calcd for C17H16N2O3: C, 68.90; H, 5.44; N, 9.45. Found: C, 69.84; H, 5.48; N, 9.44.
Compound 5m: IR (KBr): 3365 cm-1. 1H NMR (200 MHz, CDCl3): δ = 1.50-1.62 (m, 2 H), 2.18 (m, 1 H), 3.40-3.62 (m, 2 H), 3.78 (br s, 1 H), 4.65
(d, J = 3.0 Hz, 1 H), 5.25 (d, J = 8.0 Hz, 1 H), 6.53 (t, J = 8.0 Hz, 1 H), 6.68 (t, J = 8.0 Hz, 1 H), 7.05 (t, J = 8.0 Hz, 1 H), 7.36 (s, 4 H), 7.40 (d, J = 8.0 Hz, 1 H). MS: m/z = 297 [M+ + 1].
Compound 4o: IR (KBr): 3320 cm-1. 1H NMR (200 MHz, CDCl3): δ = 1.65 (m, 1 H), 2.05 (m, 1 H), 2.35 (s, 3 H), 2.45 (m, 1 H), 3.80 (m, 2 H),
4.05 (m, 2 H), 4.60 (d, J = 5.0 Hz, 1 H), 6.72 (t, J = 7.8 Hz, 1 H), 6.95 (d, J = 7.8 Hz, 1 H), 7.22-7.45 (m, 6 H); MS: m/z = 266 [M+ + 1]. Anal. Calcd for C18H19NO: C, 81.47; H, 7.21; N, 5.27. Found: C, 81.45; H, 7.24; N, 5.26.
Compound 5o: IR (KBr) 3370 cm-1; 1H NMR (200 MHz, CDCl3): δ = 1.50 (m, 1 H), 2.20 (m, 1 H), 2.40 (s, 3 H), 2.75 (m, 1 H), 3.60 (br s, 1 H),
3.70 (m, 1 H), 3.80 (m, 1 H), 4.65 (d, J = 2.6 Hz, 1 H), 5.25 (d, J = 8.0 Hz, 1 H), 6.70 (d, J = 8.1 Hz, 1 H), 7.00 (t, J = 8.0 Hz, 1 H), 7.25 (t, J = 8.0 Hz, 1 H), 7.35-7.50 (m, 5 H). MS: m/z = 266 [M+ + 1].
Compound 4s: IR (KBr): 3340 cm-1. 1H NMR (200 MHz, CDCl3): δ = 1.65 (m, 1 H), 1.92 (m, 1 H), 2.43 (m, 1 H), 3.82 (m, 2 H), 4.02 (m, 2 H),
4.55 (d, J = 4.9 Hz, 1 H), 6.72 (t, J = 7.5 Hz, 1 H), 6.99 (t, J = 7.5 Hz, 1 H), 7.26-7.46 (m, 6 H). MS: m/z = 297 [M+ + 1].
Compound 5s: IR (KBr): 3385 cm-1. 1H NMR (200 MHz, CDCl3): δ = 1.46 (m, 1 H), 2.20 (m, 1 H), 2.79 (m, 1 H), 3.66-3.80 (m, 3 H), 4.70 (d, J = 3.0 Hz, 1 H), 5.32 (d, J = 8.0 Hz, 1 H), 6.77 (t, J = 7.5 Hz, 1 H), 6.99 (d, J = 6.6 Hz, 1 H), 7.25 (d, J = 6.6 Hz, 1 H), 7.33-7.51 (m, 5 H). MS: m/z = 297 [M+ + 1].