References and Notes
<A NAME="RG03307ST-1A">1a</A>
Kupchan SM.
Komoda Y.
Court WA.
Thomas GJ.
Smith RM.
Karim A.
Gilmore CJ.
Haltiwanger RC.
Bryan RF.
J. Am. Chem. Soc.
1972,
94:
1354
<A NAME="RG03307ST-1B">1b</A>
Kupchan SM.
Komoda Y.
Branfman AR.
Sneden AT.
Court WA.
Thomas GJ.
Hintz HPJ.
Smith RM.
Karim A.
Howie GA.
Verma AK.
Nagao Y.
Dailey RG.
Zimmerly VA.
Sumner WC.
J. Org. Chem.
1977,
42:
2349
<A NAME="RG03307ST-1C">1c</A>
Bryan RF.
Gilmore CJ.
Haltiwanger RC.
J. Chem. Soc., Perkin Trans. 2
1973,
897
Also from two other plant families (Colubrina texensis, Rhamnaceae and Trewia nudiflora, Euphorbiaceae) maytansinoids were isolated:
<A NAME="RG03307ST-2A">2a</A>
Reider PJ.
Roland DM.
Maytansinoids In The Alkaloids
Vol. 23:
Brossi A.
Academic Press;
New York:
1984.
p.71-156
<A NAME="RG03307ST-2B">2b</A>
Wani MC.
Taylor HL.
Wall ME.
J. Chem. Soc., Chem. Commun.
1973,
390
<A NAME="RG03307ST-2C">2c</A>
Powell RG.
Weisleder D.
Smith CR.
Kozlowski J.
Rohwedder WK.
J. Am. Chem. Soc.
1982,
104:
4929
<A NAME="RG03307ST-2D">2d</A>
Powell RG.
Smith CR.
Plattner RD.
Jones BE.
J. Nat. Prod.
1983,
46:
660
<A NAME="RG03307ST-2E">2e</A>
Smith CR.
Powell RG. In
Chemistry and Pharmacology of Maytansinoid Alkaloids in Alkaloids
Vol. 2:
Pelletier SW.
John Wiley and Sons;
New York:
1984.
p.149-204
<A NAME="RG03307ST-3A">3a</A>
Higashide E.
Asai M.
Ootsu K.
Tanida S.
Kozai Y.
Hasegawa T.
Kishi T.
Sugino Y.
Yoneda M.
Nature (London)
1977,
270:
721
<A NAME="RG03307ST-3B">3b</A>
Asai M.
Mizuta E.
Izawa M.
Haibara K.
Kishi T.
Tetrahedron
1979,
35:
1079
A mutant of A. pretiosum spp. auranticum provided 15 additional ansamitocines:
<A NAME="RG03307ST-4A">4a</A>
Izawa M.
Tanida S.
Asai M.
J. Antibiot.
1981,
34:
496
<A NAME="RG03307ST-4B">4b</A>
Komoda Y.
Kishi T.
Maytansinoids, In Anticancer Agents Based on Natural Product Models
Douros J.
Cassady JM.
Academic Press;
New York:
1980.
p.353-389
<A NAME="RG03307ST-5A">5a</A>
Rinehart KL.
Shield LS.
Fortschr. Chem. Org. Naturst.
1976,
33:
231
<A NAME="RG03307ST-5B">5b</A>
Cassady JM.
Chan KK.
Floss HG.
Leistner E.
Chem. Pharm. Bull.
2004,
52:
1
<A NAME="RG03307ST-6A">6a</A>
Thigpen JT.
Ehrlich CE.
Creasman WT.
Curry S.
Blessing JA.
Am. J. Clin. Oncol. (CCT)
1985,
6:
273
<A NAME="RG03307ST-6B">6b</A>
Thigpen JT.
Ehrlich CE.
Conroy J.
Blessing JA.
Am. J. Clin. Oncol. (CCT)
1985,
6:
427
<A NAME="RG03307ST-6C">6c</A>
Ravry MJ.
Omura GA.
Birch R.
Am J. Clin. Oncol. (CCT)
1985,
8:
148
<A NAME="RG03307ST-7">7</A>
Issell BF.
Crooke ST.
Cancer Treat. Rev.
1978,
5:
199
<A NAME="RG03307ST-8A">8a</A>
Chari RV.
Martell BA.
Gross JL.
Cook SB.
Shah SA.
Blättler WA.
McKenzie SJ.
Goldmacher VS.
Cancer Res.
1992,
52:
127
<A NAME="RG03307ST-8B">8b</A>
Okamoto K.
Harada K.
Ikeyama S.
Iwasa S.
Jpn. J. Cancer Res.
1992,
83:
761
<A NAME="RG03307ST-8C">8c</A>
Liu C.
Tadayoni BM.
Bourret LA.
Mattocks KM.
Derr SM.
Widdison WC.
Kedersha NL.
Ariniello PD.
Goldmacher VS.
Lambert JM.
Blättler WA.
Chari RVJ.
Proc. Nat. Acad. Sci. U.S.A.
1996,
93:
8618
<A NAME="RG03307ST-9A">9a</A> These information were basically collected from semisynthetic work starting with
the natural products as recently described by:
Widdsion WC.
Wilhelm SD.
Cavanagh EE.
Whiteman KR.
Leece BA.
Kovtun Y.
Goldmacher VS.
Xie H.
Steeves RM.
Lutz RJ.
Zhao R.
Wang L.
Blättler WA.
Chari RVJ.
J. Med. Chem.
2006,
49:
4392 ; and in references 2a and 2e
<A NAME="RG03307ST-9B">9b</A>
Recent review of total synthesis approaches is given in ref. 5b.
<A NAME="RG03307ST-10">10</A>
Weist S.
Süssmuth RD.
Appl. Microbiol. Biotechnol.
2005,
68:
141
<A NAME="RG03307ST-11">11</A>
Frenzel T.
Brünjes M.
Quitschalle M.
Kirschning A.
Org. Lett.
2006,
8:
135
<A NAME="RG03307ST-12">12</A>
Kubota T.
Brünjes M.
Frenzel T.
Xu J.
Kirschning A.
Floss HG.
ChemBioChem
2006,
7:
1221
<A NAME="RG03307ST-13">13</A>
Yu T.-W.
Bai L.
Clade D.
Hoffmann D.
Toelzer S.
Trinh KQ.
Xu J.
Moss SJ.
Leistner E.
Floss HG.
Proc. Nat. Acad. Sci. U.S.A.
2002,
99:
7968
<A NAME="RG03307ST-14">14</A>
Kashin D.
Meyer A.
Wittenberg R.
Schöning K.-U.
Gommlich S.
Kirschning A.
Synthesis
2007,
304
<A NAME="RG03307ST-15">15</A>
Becker AM.
Rickards RW.
Brown RFC.
Tetrahedron
1983,
39:
4189
<A NAME="RG03307ST-16">16</A> Other vinylmetal species such as vinylstannane and vinylzinc only gave reduced
yields of the coupling product in Pd(0)-catalyzed cross-coupling reactions:
Pérez I.
Pérez Sestelo J.
Sarandeses LA.
J. Am. Chem. Soc.
2001,
123:
4155
<A NAME="RG03307ST-17">17</A>
Andrus MB.
Meredith EL.
Soma Sekhar BBV.
Org. Lett.
2001,
6:
259
<A NAME="RG03307ST-18">18</A>
Cabré J.
Palomo AL.
Synthesis
1984,
413
<A NAME="RG03307ST-19">19</A>
General Procedure for the Preparation of Amides 17 and 19: Ketoacid 18 (1 equiv) was dissolved in CH2Cl2, then treated with BOPCl (1 equiv) and DIPEA (1 equiv) and stirred at r.t. for 3
h. A solution of aniline 8/9 (1 equiv) and DIPEA (1 equiv) in CH2Cl2 was added over a period of 2 h. After completion (ca. 18 h), the reaction was terminated
by addition of aq phosphate buffer (pH 7) and CH2Cl2. The organic phases were combined, dried over Na2SO4 and the solvent was removed under reduced pressure. Flash column chromatography over
silica eluting with hexanes-EtOAc (20:1) furnished the corresponding amide 17/19.
Spectroscopic data for 17: [α]D
20 -59.0 (c = 1.2, CHCl3). 1H NMR (400 MHz, CDCl3; CHCl3 = 7.26 ppm): δ = 7.69-7.71 (m, 4 H, OTBDPS), 7.50 (s, 1 H, NH), 7.33-7.43 (m, 6 H,
OTBDPS), 6.95 (s, 1 H, ArH), 6.83 (s, 1 H, ArH), 6.27 (s, 1 H, ArH), 5.73 (ddt, J = 6.7, 10.2, 16.9 Hz, 1 H, 2′-H), 5.67 (ddd, J = 6.9, 10.3, 17.2 Hz, 1 H, 11-H), 5.44 (ddd, J = 1.3, 1.3, 17.2 Hz, 1 H, 12-H), 5.37 (ddd, J = 1.3, 1.3, 10.3 Hz, 1 H, 12-H′), 5.33-5.37 (m, 1 H, 5-H), 4.92 (ddd, J = 1.6, 1.6, 17.1 Hz, 1 H, 3′-H), 4.89 (ddd, J = 1.6, 1.6, 17.1 Hz, 1 H, 3′-H′), 4.39 (dd, J = 3.5, 7.3 Hz, 1 H, 3-H), 4.01-4.06 (m, 2 H, 7-H, 10-H), 3.33 (s, 3 H, 10-OCH3), 3.13 (s, 1 H, 1′-H), 3.12 (s 1 H, 1′-H′), 2.66 (dd, J = 6.7, 17.2 Hz, 1 H, 8-H), 2.57 (dd, J = 4.6, 17.2 Hz, 1 H, 8-H′), 2.47-2.52 (m, 1 H, 6-H), 2.42 (dd, J = 3.8, 13.8 Hz, 1 H, 2-H), 2.36 (dd, J = 7.8, 13.8 Hz, 1 H, 2-H′), 1.59 (d, J = 1.6 Hz, 3 H, 4-CH3), 1.08 (s, 9 H, OTBDPS), 0.86 (d, J = 7.0 Hz, 3 H, 6-CH3), 0.84 [s, 9 H, OSiC(CH3)3], 0.82 [s, 9 H, OSiC(CH3)3], 0.05 (s, 3 H, OSiCH3), -0.02 (s, 3 H, OSiCH3), -0.03 (s, 3 H, OSiCH3), -0.06 (s, 3 H, OSiCH3). 13C NMR (100 MHz, CDCl3 = 77.0 ppm): δ = 206.8 (s, C-9), 169.1 (s, C-1), 155.9 (s, Ar), 141.7 (s, Ar), 138.7
(s, Ar), 136.8 (d, C-2′), 136.5 (s, C-4), 135.5 (d, Ph), 132.9 (s, Ph), 132.4 (d,
C-11), 129.8 (d, Ph), 128.3 (d, C-5), 127.7 (d, Ph), 120.3 (t, C-12), 115.9 (d, Ar),
115.8 (t, C-3′), 112.7 (d, Ar), 108.9 (d, Ar), 88.8 (d, C-10), 75.2 (d, C-3), 71.4
(d, C-7), 57.0 (q, 10-OCH3), 46.1 (t, C-2), 43.4 (t, C-8), 39.9 (t, C-1′), 38.2 (d, C-6), 26.5 [q, OSi(Ph2)C(CH3)3], 26.0 {q, OSi[(CH3)2]C(CH3)3}, 25.8 {q, OSi[(CH3)2]C(CH3)3}, 19.5 [s, OSi(Ph2)C(CH3)3], 18.1 {s, OSi[(CH3)2]C(CH3)3}, 18.0 {s, OSi[(CH3)2]C(CH3)3}, 16.2 (q, 6-CH3), 12.5 (q, 4-CH3), -4.5 [q, 2 × OSiC(CH3)3], -4.7 [q, OSiC(CH3)3], -5.2 [q, OSiC(CH3)3]. HRMS (ESI): m/z [M + H]+ calcd for C52H79Si3NO6: 898.5294; found: 898.5288. 19: [α]D
20 -37.5 (c = 0.8, CHCl3). 1H NMR (400 MHz, CDCl3; CHCl3 = 7.26 ppm): δ = 7.97 (s, 1 H, ArH), 7.77 (s, 1 H, NH), 5.99 (ddt, J = 6.1, 10.3, 16.7 Hz, 1 H, 2′-H), 5.68 (ddd, J = 6.9, 10.3, 17.2 Hz, 1 H, 11-H), 5.45 (ddd, J = 1.3, 1.3, 17.2 Hz, 1 H, 12-H), 5.40-5.43 (m, 1 H, 5-H), 5.38 (ddd, J = 1.3, 1.3, 10.3 Hz, 1 H, 12-H′), 5.00 (ddd, J = 1.6, 3.3, 10.3 Hz, 1 H, 3′-H), 4.89 (dd, J = 1.6, 3.3, 16.7 Hz, 1 H, 3′-H′), 4.51 (dd, J = 3.8, 8.2 Hz, 1 H, 3-H), 4.07 (dt, J = 5.0, 6.6 Hz, 1 H, 7-H), 4.05 (ddd, J = 1.3, 1.3, 6.9 Hz, 1 H, 10-H), 3.83 (s, 3 H, ArOCH3), 3.78 (s, 3 H, ArOCH3), 3.69 (s, 3 H, ArOCH3), 3.42 (dd, J = 1.4, 6.0 Hz, 2 H, 1′-H, 1′-H′), 3.34 (s, 3 H, 10-OCH3), 2.69 (dd, J = 6.6, 17.1 Hz, 1 H, 8-H), 2.60 (dd, J = 4.8, 17.1 Hz, 1 H, 8-H′), 2.50 (m, 1 H, 6-H), 2.51 (dd, J = 3.8, 13.7 Hz, 1 H, 2-H), 2.44 (dd, J = 8.2, 13.7 Hz, 1 H, 2-H′), 1.65 (d, J = 1.0 Hz, 3 H, 4-CH3), 0.85 (d, J = 4.4 Hz, 3 H, 6-CH3), 0.84 [s, 9 H, OSiC(CH3)3], 0.83 [s, 9 H, OSiC(CH3)3], 0.05 (s, 3 H, OSiCH3), 0.02 (s, 3 H, OSiCH3), 0.01 (s, 3 H, OSiCH3), -0.03 (s, 3 H, OSiCH3). 13C NMR (100 MHz, CDCl3 = 77.0 ppm): δ = 206.8 (s, C-9), 169.1 (s, C-1), 149.1 (s, Ar), 143.3 (s, Ar), 140.8
(s, Ar), 137.1 (s, C-2′), 136.4 (s, C-4), 132.4 (d, C-11), 128.4 (d, C-5), 127.4 (s,
Ar), 126.4 (s, Ar), 120.3 (t, C-12), 115.0 (t, C-3′), 103.4 (d, Ar), 88.9 (d, C-10),
75.4 (d, C-3), 71.4 (d, C-7), 61.5 (q, ArOCH3), 60.9 (q, ArOCH3), 56.9 (q, 10-OCH3), 55.9 (q, ArOCH3), 46.5 (t, C-2), 43.4 (t, C-8), 38.1 (d, C-6), 28.7 (t, C-1′), 25.9 {q, OSi[(CH3)2]C(CH3)3}, 25.8 {q, OSi[(CH3)2]C(CH3)3}, 18.1 {s, OSi[(CH3)2]C(CH3)3}, 18.0 {s, OSi[(CH3)2]C(CH3)3}, 16.0 (q, 6-CH3), 12.4 (q, 4-CH3), -4.5 [q, 2 × OSiC(CH3)3], -4.6 [q, OSiC(CH3)3], -5.2 [q, OSiC(CH3)3]. HRMS (ESI): m/z [M + Na]+ calcd for C39H67Si2NO8: 756.4303; found: 756.4306.
<A NAME="RG03307ST-20A">20a</A>
Gradillas A.
Pérez-Castells J.
Angew. Chem. Int. Ed.
2006,
45:
6086 ; Angew. Chem. 2006, 118, 6232
<A NAME="RG03307ST-20B">20b</A>
Lemarchand A.
Bach T.
Synthesis
2005,
1977
<A NAME="RG03307ST-20C">20c</A>
McErlean CSP.
Proisy N.
Davis CJ.
Boland NA.
Sharp SY.
Boxall K.
Slawin AMZ.
Workman P.
Moody CJ.
Org. Biomol. Chem.
2007,
5:
531
<A NAME="RG03307ST-21">21</A>
Tetra-n-butylammonium fluoride (TBAF) turned out to be too basic for inducing the elimination
of the siloxy group at C-3.
<A NAME="RG03307ST-22">22</A>
General Procedure for the Preparation of Macrocycles 5 and 6: Amide 17/19 (1 equiv) was dissolved in anhyd CH2Cl2, treated with Grubbs’ 2nd generation catalyst (0.2 equiv) and heated to reflux. After completion (ca. 6 h),
the reaction was terminated by the addition of aq phosphate buffer (pH 7). The organic
phases were combined, dried over Na2SO4 and the solvent was removed under reduced pressure. Flash column chromatography over
silica with hexanes-EtOAc (20:1) as eluent yielded the corresponding protected macrolactams
which were dissolved in anhyd THF and treated with HF·Py (ca. 70% HF, excess) at r.t.
After completion (ca. 16 h), the reaction mixture was neutralized with a sat. NaHCO3 solution. The aqueous phase was extracted with EtOAc, the organic phases were combined,
dried over Na2SO4 and the solvent was removed under reduced pressure. Flash column chromatography over
silica with CH2Cl2-MeOH (50:1) as eluent yielded the corresponding macrolactam 5/6.
Spectroscopic data for 5: [α]D
20 -134.6 (c = 1.0, MeOH). 1H NMR (400 MHz, CD3OD; CH3OH = 3.31 ppm): δ = 7.90 (s, 1 H, NH), 7.10 (dd, J = 1.6, 1.6 Hz, 1 H, ArH), 6.51 (dd, J = 2.1, 2.1 Hz, 1 H, ArH), 6.39 (dd, J = 1.6, 2.1 Hz, 1 H, ArH), 6.06 (dddd, J = 0.9, 6.7, 8.0, 15.5 Hz, 1 H, 12-H), 5.41 (psd, J = 9.3 Hz, 1 H, 5-H), 5.26 (ddt, J = 1.1, 8.1, 15.5 Hz, 1 H, 11-H), 4.31-4.37 (m, 2 H, 3-H, 10-H), 3.96 (ddd, J = 3.6, 8.5, 8.5 Hz, 1 H, 7-H), 3.32-3.35 (m, 2 H, 13-H, 13-H′), 3.33 (s, 3 H, 10-OCH3), 2.75 (dd, J = 3.6, 13.7 Hz, 1 H, 2-H), 2.62 (dd, J = 6.6, 13.7 Hz, 1 H, 2-H), 2.50-2.54 (m, 2 H, 8-H, 8-H′), 2.44-2.49 (m, 1 H, 6-H),
1.66 (d, J = 0.9 Hz, 3 H, 4-CH3), 0.96 (d, J = 6.3 Hz, 3 H, 6-CH3). 13C NMR (100 MHz, CD3OD = 49.0 ppm): δ = 209.2 (s, C-9), 171.5 (s, C-1), 158.9 (s, Ar), 142.5 (s, Ar),
140.4 (s, Ar), 138.7 (s, C-4), 137.9 (d, C-12), 127.0 (d, C-5), 126.7 (d, C-11), 113.1
(d, Ar), 112.9 (d, Ar), 105.7 (d, Ar), 89.9 (d, C-10), 74.3 (d, C-7), 73.0 (d, C-3),
57.0 (q, 10-OCH3), 44.7 (t, C-8), 42.6 (t, C-2), 40.0 (d, C-6), 39.3 (t, C-13), 17.7 (q, 6-CH3), 14.7 (q, 4-CH3). HRMS (ESI): m/z [M - H+] calcd for C22H29NO6: 402.1917; found: 402.1923.
6: 1H NMR (400 MHz, CD3OD; CH3OH = 3.31 ppm): δ = 8.01 (t, J = 1.51 Hz, 1 H, ArH), 5.92 (dddd, J = 0.6, 3.4, 7.9, 15.5 Hz, 1 H, 12-H), 5.58 (psd, J = 8.5 Hz, 1 H, 5-H), 5.26 (dd, J = 7.0, 15.5 Hz, 1 H, 11-H), 4.40 (m, 1 H, 3-H), 4.21 (d, J = 7.0 Hz, 1 H, 10-H), 3.93 (ddd, J = 1.6, 8.9, 10.5 Hz, 1 H, 7-H), 3.82 (s, 3 H, ArOCH3), 3.70-3.81 (m, 1 H, 13-H), 3.75 (s, 3 H, ArOCH3), 3.68 (s, 3 H, ArOCH3), 3.33 (s, 3 H, 10-OCH3), 3.13-3.26 (m, 1 H, 13-H′), 2.92 (dd, J = 4.5, 16.7 Hz, 1 H, 2-H), 2.77 (dd, J = 3.1, 16.7 Hz, 1 H, 2-H′), 2.54 (dd, J = 1.6, 16.9 Hz, 1 H, 8-H), 2.29 (dd, J = 10.5, 16.9, 10.5 Hz, 1 H, 8-H′), 2.31 (m, 1 H, 6-H), 1.62 (s, 3 H, 4-CH3), 1.01 (d, J = 6.3 Hz, 3 H, 6-CH3). 13C NMR (100 MHz, CD3OD = 49.0 ppm): δ = 208.2 (s, C-9), 171.8 (s, C-1), 150.5 (s, Ar), 143.9 (s, Ar),
142.7 (s, Ar), 136.8 (s, Ar), 134.3 (d, C-12), 129.5 (s, C-4), 127.4 (d, C-5), 127.3
(s, Ar), 125.0 (d, C-11), 104.5 (d, Ar), 88.7 (d, C-10), 72.9 (d, C-7), 70.7 (d, C-3),
61.7 (q, ArOCH3), 61.4 (q, ArOCH3), 57.3 (q, 10-CH3), 56.4 (q, ArOCH3), 44.9 (t, C-2), 42.6 (t, C-8), 39.4 (d, C-6), 27.9 (t, C-13), 18.1 (q, 6-CH3), 14.4 (q, 4-CH3). HRMS (ESI): m/z [M + Na+] calcd for C25H35NO8: 500.2260; found: 500.2260.
We tested oxidation [(NH4)2Ce(NO3), MeCN] of the aromatic moiety present in the silyl-protected precursor of 6 but could only isolate the ortho-quinone 20 (Figure 2 in 71% yield instead of the para-quinone present in geldanamycin. See also:
<A NAME="RG03307ST-23A">23a</A>
Andrus MB.
Meredith EL.
Hicken EJ.
Simmons BL.
Glancey RR.
Ma W.
J. Org. Chem.
2003,
68:
8162
<A NAME="RG03307ST-23B">23b</A>
Lemarchand A.
Bach T.
Tetrahedron
2004,
60:
9659
<A NAME="RG03307ST-24">24</A>
Meyer, A.; Brünjes, M.; Taft, F.; Frenzel, F.; Sasse, F.; Kirschning, A.; unpublished
results.