Synlett 2007(7): 1109-1111  
DOI: 10.1055/s-2007-977435
LETTER
© Georg Thieme Verlag Stuttgart · New York

Domino Addition/N-C Heterocyclization of Azides with Allenyl Magnesium Bromide: Rapid Synthesis of 5-Butynyl-1,2,3-triazoles [1]

Syed Shafi, Abid Hussain Banday, Tabasum Ismail, H. M. Sampath Kumar*
Regional Research Laboratory, Canal Road, Jammu Tawi 180001, India
Fax: +91(191)2548607; e-Mail: hmskumar@yahoo.com;
Further Information

Publication History

Received 20 August 2006
Publication Date:
13 April 2007 (online)

Abstract

1,5-Disubstituted 1,2,3-triazoles are formed through a novel domino reaction involving the addition of aromatic azides to an excess of allenylmagnesium bromide with concomitant N-C heterocyclization followed by the addition of another mole of allenylmagnesium species to generate the terminal acetylenic product in moderate to high yields.

1

RRL communication No. SCL-6/07.

    References and Notes

  • 2 Sanghvi YS. Bhattacharya BK. Kini GD. Matsumoto SS. Larson SB. Jolley WB. Robins RK. Revankar GR. J. Med. Chem.  1990,  33:  336 
  • 3 Chen MD. Lu SJ. Yuag GP. Yang SY. Du XL. Heterocycl. Commun.  2000,  6:  421 
  • 4 Sherement EA. Tomanov RI. Trukhin EV. Berestovitskaya VM. Russ. J. Org. Chem.  2004,  40:  594 
  • 5 Allais A, and Meier J. inventors; Ger. Offen.,  1815467. 
  • 6 Banu KM. Dinakar A. Ananthanarayanan C. Indian J. Pharm. Sci.  1999,  4:  202 
  • 7a Meier R. inventors; Eur. Patent  199262. 
  • 7b Meier R. inventors; US Patent  4789680. 
  • 8 Passannanti A. Diana P. Barraja P. Mingoia F. Lauria A. Cirrincione G. Heterocycles  1998,  48:  1229 
  • 9 Jilino M. Stevens FG. J. Chem. Soc, Perkin Trans. 1  1998,  1677 
  • 10 Diana GD, and Nitz JJ. inventors; Eur. Patent  566199. 
  • 11 Manfredini S. Vicentini CB. Manfrini M. Bianchi N. Rutigliano C. Mischiati C. Gambari R. Bioorg. Med. Chem.  2000,  8:  2343 
  • 12 Danoun S. Baziard-Mouysset G. Stigliani J. Payard M. Selkti M. Viossat B. Tomas A. Heterocycl. Commun.  1998,  4:  45 
  • 13 Biagi G. Calderone V. Giorgi I. Livi O. Martinotti E. Martelli A. Nardi A. Farmaco  2004,  59:  397 
  • 14a Bourne Y. Kolb HC. Radic Z. Sharpless KB. Taylor P. Marchot P. Proc. Natl. Acad. Sci. U.S.A.  2004,  101:  1449 
  • 14b Lewis WG. Green LG. Grynszpan F. Radic Z. Carlier PR. Taylor P. Finn MG. Sharpless KB. Angew. Chem. Int. Ed.  2002,  41:  1053 
  • 15 Amantini D. Fringuelli F. Piermatti O. Pizzo F. Zunino E. Vaccaro L. J. Org. Chem.  2005,  70:  6526 
  • 16 Rostovtsev VV. Green LG. Fokin VV. Sharpless KB. Angew. Chem. Int. Ed.  2002,  41:  2596 ; Angew. Chem.  2002,  114:  2708 
  • 17 Wu YM. Deng J. Li YL. Chen QY. Synthesis  2005,  1314 
  • 18 Liu D. Gao W. Dai Q. Zhang X. Org. Lett.  2005,  7:  4907 
  • 19 Savini L. Massarelli P. Chiasserini L. Pellerano C. Bruni G. Farmaco  1994,  49:  633 
  • 20 Holla BS. Mahalinga M. Karthikeyan MS. Poojary B. Akberali PM. Kumari NS. Eur. J. Med. Chem.  2005,  40:  1173 
  • 21 Rogue DR. Neill JL. Antoon JW. Stevens EP. Synthesis  2005,  2497 
  • 22a Akimova GS. Chistokletov VN. Petrov AA. Zh. Org. Khim.  1967,  3:  968 
  • 22b Akimova GS. Chistokletov VN. Petrov AA. Zh. Org. Khim.  1967,  3:  2241 
  • 22c Akimova GS. Chistokletov VN. Petrov AA. Zh. Org. Khim.  1968,  4:  389 
  • 23 Wang Z.-X. Qin H.-L. Chem. Commun.  2003,  2450 
  • 24 Krasinski A. Fokin VV. Sharpless KB. Org. Lett.  2004,  8:  1237 
  • 25 Schlenk W. Chem. Ber.  1929,  62B:  920 
1

RRL communication No. SCL-6/07.

26

In a typical procedure, to a suspension of magnesium turnings (1.6 g, 0.07 mol) in anhyd THF with mercury(II) chloride (10 mg, 0.125 w/w of propargyl bromide) was added propargyl bromide (7.5 mL of an 80 wt% solution in toluene, 0.07 mol) in small portions while stirring the reaction mixture at r.t. (Note: A small crystal of iodine is generally required to promote formation of the Grignard reagent). The mixture was stirred at r.t. for 15 min to give a cloudy light green solution. The allenylmagnesium bromide generated as above was cooled to ambient temperature and to it was added dropwise a solution of p-methoxyphenyl azide (1 g, 0.007 mol) and stirring was continued at ambient temperature for 10 min followed by quenching with an aq NH4Cl solution (10 mL) and diluting with EtOAc (50 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (2 × 20 mL). The combined organic layers were dried (anhyd Na2SO4) and evaporated under reduced pressure to afford the crude product which was subjected to chromatography (basic aluminum oxide, elution: n-hexane-EtOAc gradient) to afford pure 5-but-3-yn-1-yl-1-(4-methoxyphenyl)-1H-1,2,3-triazole as a brown colored syrupy liquid (1.066 g,70%).
IR: 3293, 2957, 2925, 2855, 1722, 1597, 1546, 1501, 1457, 1253, 1120, 1092, 1069, 917, 765, 693, 650 cm-1. 1H NMR (CDCl3): δ = 2.05 (t, J = 2.5 Hz, 1 H), 2.50 (m, 2 H), 2.90 (t, J = 7.3 Hz, 2 H), 3.92 (s, 3 H), 7.30 (d, J = 8.9 Hz, 2 H), 7.45 (d, J = 8.9 Hz, 2 H ), 7.80 (s, 1 H). 13C NMR (500 MHz, CDCl3): δ = 17.83, 22.97, 55.64, 70.07, 81.81, 114.70, 126.84, 128.79, 132.48, 136.34, 162.51. ESI-MS: m/z = 227 [M+], 250 [M + Na]. Anal. Calcd for C13H13N3O: C, 68.71; H, 5.77; N, 18.49; O, 7.04. Found: C, 68.60; H, 5.81; N, 18.60; O, 6.99.