References and Notes
<A NAME="RG02107ST-1A">1a</A> For reviews, see:
Elguero J.
Pyrazoles and their Benzo Derivatives, In Comprehensive Heterocyclic Chemistry
Vol. 5:
Katritzky AR.
Rees CW.
Pergamon Press;
Oxford:
1984.
p.167-303
<A NAME="RG02107ST-1B">1b</A>
Behr LC.
Fusco R.
Jacobe CH.
In Pyrazoles, Pyrazolines, Pyrazolidines, Indazoles and Condensed Rings
Wiley RH.
Wiley Int.;
New York:
1969.
<A NAME="RG02107ST-1C">1c</A>
Minkin VI.
Glukhovtsev MN.
Simkin BY.
Aromaticity and Antiaromaticity, Electronic and Structural Aspects
Wiley;
New York:
1994.
As recent examples, see:
<A NAME="RG02107ST-2A">2a</A>
Hartinger CG.
Zorbas-Seifired S.
Jakupec MA.
Kynast B.
Zorbas H.
Keppler BK.
J. Inorg. Biochem.
2006,
100:
891
<A NAME="RG02107ST-2B">2b</A>
Carella A.
Vives G.
Cox T.
Jaud J.
Rapenne G.
Launay J.
Eur. J. Inorg. Chem.
2006,
980
As examples, see:
<A NAME="RG02107ST-3A">3a</A>
Tanitame A.
Oyamada Y.
Ofuji K.
Kyoya Y.
Suzuki K.
Ito H.
Kawasaki M.
Nagai K.
Wachi M.
Yamagishi JI.
Bioorg. Med. Chem.
2004,
14:
2857
<A NAME="RG02107ST-3B">3b</A>
Iwakubo M.
Takami A.
Okada Y.
Kawata T.
Tagami Y.
Ohashi H.
Sato M.
Sugiyama T.
Fukushima K.
Iijima H.
Bioorg. Med. Chem.
2007, in press
<A NAME="RG02107ST-3C">3c</A>
De Angelis M.
Stossi F.
Carlson KA.
Katzenellenbogen BS.
Katzenellenbogen JA.
J. Med. Chem.
2005,
48:
1132
<A NAME="RG02107ST-4">4</A>
Lukin K.
Hsu MC.
Fernando D.
Leanna MR.
J. Org. Chem.
2006,
71:
8166
<A NAME="RG02107ST-5A">5a</A>
Collot V.
Bovy RB.
Rault S.
Tetrahedron Lett.
2001,
41:
9053
<A NAME="RG02107ST-5B">5b</A>
Collot V.
Dallemagne P.
Bovy RB.
Rault S.
Tetrahedron
1999,
55:
6917
<A NAME="RG02107ST-6A">6a</A>
El Kazzouli S.
Bouissane L.
Khouili M.
Guillaumet G.
Tetrahedron Lett.
2005,
46:
6163
<A NAME="RG02107ST-6B">6b</A>
Bouissane L.
El Kazzouli S.
Léger JM.
Jarry C.
Rakib EM.
Khouili M.
Guillaumet G.
Tetrahedron
2005,
61:
8218
<A NAME="RG02107ST-6C">6c</A>
Bouissane L.
El Kazzouli S.
Léonce S.
Pfeiffer B.
Rakib EM.
Khouili M.
Guillaumet G.
Bioorg. Med. Chem.
2006,
14:
1078
<A NAME="RG02107ST-7">7</A>
Raman CS.
Li H.
Martasek P.
Southan G.
Masters BS.
Poulos TL.
Biochemistry
2001,
40:
13448
<A NAME="RG02107ST-8">8</A>
Schumann P.
Collot V.
Hommet Y.
Gsell W.
Dauphin F.
Sopkova J.
MacKenzie ET.
Duval D.
Boulouard M.
Rault S.
Bioorg. Med. Chem. Lett.
2001,
11:
1153
<A NAME="RG02107ST-9">9</A>
For 3: mp 94 °C. MS (CI-CH4): m/z = 267 [M + H+]. HRMS: m/z [M + NH4
+] calcd for C8H5N2F3O3S: 326.0422; found: 326.0424. 1H NMR (200 MHz, acetone-d
6): δ = 8.27 (s, 1 H), 7.93 (2 × d, J = 9.2 Hz, 2 H), 7.50 (s, 1 H), 7.27 (t, J = 9.2 Hz, 1 H). 19F NMR (188 MHz, acetone-d
6): δ = -68.92 (s). 13C NMR (75 MHz, acetone-d
6): δ = 128.4, 122.9, 122.5, 121.8, 119.4, 119.0, 115.8, 116.5.
<A NAME="RG02107ST-10">10</A>
Ritter K.
Synthesis
1993,
735
<A NAME="RG02107ST-11A">11a</A>
Comins DL.
Dehghani A.
Tetrahedron Lett.
1992,
33:
6299
<A NAME="RG02107ST-11B">11b</A>
Comins DL.
Dehghani A.
Foti CJ.
Joseph SP.
Org. Synth.
1998,
Coll. Vol. IX:
165
<A NAME="RG02107ST-12A">12a</A>
Porter HD.
Peterson WD.
Org. Synth.
1955,
Coll. Vol. III:
660
<A NAME="RG02107ST-12B">12b</A>
Doyle MP.
Bryker WJ.
J. Org. Chem.
1979,
44:
1572
<A NAME="RG02107ST-12C">12c</A>
Boulton BE.
Coller BAW.
Aust. J. Chem.
1974,
27:
2343
<A NAME="RG02107ST-12D">12d</A>
Suzuki N.
Kaneko Y.
Nomoto T.
Isawa Y.
Chem. Commun.
1984,
1523
<A NAME="RG02107ST-12E">12e</A>
Doyle MP.
Siegfried B.
Elliot RC.
Dellaria JF.
J. Org. Chem.
1977,
42:
2431
<A NAME="RG02107ST-13">13</A> For 4: mp 114.2 °C. MS (EI): m/z = 117 [M - I]+·, 127 [I+·], 244 [M+·]. Anal. Calcd for C7H5N2I: C, 34.43; H, 2.05; N, 11.47. Found: C, 34.46; H, 1.93; N, 11.38. 1H NMR (200 MHz, CDCl3): δ = 8.25 (s, 1 H), 7.77, 7.73 (2 × dd, 3
J = 7.5 Hz, 4
J = 0.9 Hz, 2 H), 7.55 (br s, 1 H), 6.97 (dd, J = 7.5, 7.5 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 142.4, 136.3, 135.6, 123.2, 122.7, 121.0, 115.7
<A NAME="RG02107ST-14">14</A>
To a solution of 2-methyl-6-nitroaniline (5.00 g, 32.9 mmol) in glacial AcOH (235
mL) was added all at once a solution of sodium nitrite (2.27 g, 32.9 mmol) in H2O (5.5 mL). During this addition the temperature was not allowed to rise above 25
°C. After the nitrite solution had been added, stirring was maintained for 20 min.
Any yellow precipitate formed during this time was filtered and discarded. Then, the
solution was evaporated in vacuo. Cold H2O was added to the residue and the contents of the flask were washed into a beaker
where they were stirred. The product was filtered, rinsed with cold H2O and dried to afford 7-nitro-1H-indazole (5.29 g, 98% yield); mp 180 °C.
<A NAME="RG02107ST-15">15</A>
Noelting E.
Ber. Dtsch. Chem. Ges.
1904,
37:
2584
<A NAME="RG02107ST-16">16</A>
Tsuji J. In Palladium Reagents and Catalysts, New Perspectives for the 21st Century
Wiley RH.
Wiley Int.;
New York:
2004.
<A NAME="RG02107ST-17A">17a</A>
Anderson BA.
Bell EC.
Ginah FO.
Harn NK.
Pagh LM.
Wepsiec JP.
J. Org. Chem.
1998,
63:
8224
<A NAME="RG02107ST-17B">17b</A>
Sundermeier M.
Zapf A.
Mutyala S.
Baumann W.
Sans J.
Weiss S.
Beller M.
Chem. Eur. J.
2003,
9:
1828
<A NAME="RG02107ST-17C">17c</A>
Ma D.
Tian H.
J. Chem. Soc., Perkin Trans. 1
1997,
3493
<A NAME="RG02107ST-18">18</A>
Kumar K.
Zapf A.
Michalik D.
Tillac A.
Heinrich T.
Böttcher H.
Arlt M.
Beller M.
Org. Lett.
2004,
6:
7
<A NAME="RG02107ST-19A">19a</A>
Gilchrist TL.
Heterocycl. Chem.
1997,
315
<A NAME="RG02107ST-19B">19b</A>
Elguero J.
Fruchier A.
Jacquier R.
Bull. Soc. Chim. Fr.
1966,
9:
3401
<A NAME="RG02107ST-19C">19c</A>
Elguero J.
Fruchier A.
Jacquier R.
Bull. Soc. Chim. Fr.
1966,
2075
<A NAME="RG02107ST-20A">20a</A>
Kubota H.
Rice KC.
Tetrahedron Lett.
1998,
39:
2907
<A NAME="RG02107ST-20B">20b</A>
Frantz DE.
Weaver DG.
Carey JP.
Kress MH.
Dolling UH.
Org. Lett.
2002,
4:
4717
<A NAME="RG02107ST-20C">20c</A>
Jin F.
Confalone PN.
Tetrahedron Lett.
2000,
41:
3271
<A NAME="RG02107ST-21">21</A>
For 10: mp 160.7 °C. MS (EI): m/z = 143 [M+]. HRMS: m/z [M + H]+ calcd for C8H6N3: 144.0562; found: 144.0565. 1H NMR (200 MHz, acetone-d
6): δ = 13.14 (br s, 1 H), 8.28 (s, 1 H), 8.18, 7.87 (2 × d, J = 13.3 Hz, 2 H), 7.32 (t, J = 13.3 Hz, 1 H). 13C NMR (75 MHz, acetone-d
6): δ = 136.2, 132.8, 135.5, 127.5, 125.2, 121.5, 116.9, 94.9.
<A NAME="RG02107ST-22">22</A>
Lazaro R.
Bouchet P.
Elguero J.
ACH Models Chem.
1999,
136:
497
<A NAME="RG02107ST-23">23</A>
For 12: mp 77.5 °C. MS (EI): m/z =142 [M+·]. HRMS (TOF-MS, ES+): m/z [M + H+] calcd for C9H7N2: 143.0609; found: 143.0620. 1H NMR (200 MHz, CDCl3): δ = 10.70 (br s, 1 H), 8.15 (s, 1 H), 7.78, 7.56 (2 × d, J = 8.1 Hz, 2 H), 7.15 (t, J = 8.1 Hz, 1 H), 3.46 (s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 134.0, 130.8, 122.8, 122.2, 122.1, 121.1, 104.5, 82.5, 79.2. For 5: mp 160.9 °C. MS (EI): m/z = 323 [M+·], 243 [M+· - Br·]+, 116 [M+· - Br· - I·]+. Anal. Calcd for C7H4N2IBr: C, 26.01; H, 1.24; N, 8.67. Found: C, 26.23; H, 1.28; N, 8.61. 1H NMR (200 MHz, CDCl3): δ = 10.10 (br s, 1 H), 7.81, 7.63 (2 × d, J = 8.0 Hz, 2 H), 7.03 (t, J = 8.0 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 143.1, 136.67, 131.12, 124.26, 123.46, 120.43, 112.20.
For examples, see:
<A NAME="RG02107ST-24A">24a</A>
Chapman GM.
Stanforth SP.
Tarbit B.
Watson MD.
J. Chem. Soc., Perkin Trans. 1
2002,
581
<A NAME="RG02107ST-24B">24b</A>
Tao W.
Nesbitt S.
Heck RF.
J. Org. Chem.
1990,
55:
63