References and Notes
<A NAME="RG00807ST-1A">1a</A>
Alonso F.
Beletskaya IP.
Yus M.
Chem. Rev.
2004,
104:
3079
<A NAME="RG00807ST-1B">1b</A>
Nakamura I.
Yamamoto Y.
Chem. Rev.
2004,
104:
2127
<A NAME="RG00807ST-2A">2a</A>
Hosokawa T.
Murahashi S.-I.
Intramolecular Oxypalladation, In Handbook of Organopalladium Chemistry for Organic Synthesis
Vol. 2:
Negishi E.-I.
John Wiley and Sons;
New York:
2002.
p.2169
<A NAME="RG00807ST-2B">2b</A>
Zeni G.
Larock RC.
Chem. Rev.
2004,
104:
2285
For reviews, see:
<A NAME="RG00807ST-3A">3a</A>
Tsuji J. In Handbook of Organopalladium Chemistry for Organic Synthesis
Vol. 1:
Negishi E.-I.
John Wiley and Sons;
New York:
2002.
p.1669
<A NAME="RG00807ST-3B">3b</A>
Trost BM.
Vranken DLV.
Chem. Rev.
1996,
96:
395
<A NAME="RG00807ST-3C">3c</A>
Hegedus LS.
Transition Metals in the Synthesis of Complex Organic Molecules
University Science Book;
Mill Valley:
1994.
<A NAME="RG00807ST-4">4</A>
Miyabe H.
Yoshida K.
Reddy VK.
Matsumura A.
Takemoto Y.
J. Org. Chem.
2005,
70:
5630
<A NAME="RG00807ST-5">5</A>
Miyabe H.
Yoshida K.
Yamauchi M.
Takemoto Y.
J. Org. Chem.
2005,
70:
2148
<A NAME="RG00807ST-6">6</A>
Frederickson M.
Tetrahedron
1997,
53:
403
<A NAME="RG00807ST-7">7</A>
Merino P. In Science of Synthesis
Vol. 27:
Padwa A.
Georg Thieme Verlag;
New York:
2004.
p.511
<A NAME="RG00807ST-8">8</A>
Merino P. In Targets in Heterocyclic Systems: Chemistry and Properties
Vol. 7:
Attanasi OA.
Spinelli D.
Italian Society of Chemistry;
Rome:
2003.
p.140
<A NAME="RG00807ST-9">9</A>
To the best of our knowledge, the only precedent so far reported (see ref. 5) deals
with intermolecular reactions, using carbonates as leaving groups, and necessitating
an electron-withdrawing group on the hydroxylamine nitrogen atom.
<A NAME="RG00807ST-10A">10a</A>
Merino P.
Delso I.
Mannucci V.
Tejero T.
Tetrahedron Lett.
2006,
47:
3311
<A NAME="RG00807ST-10B">10b</A>
Laskar DD.
Prajapati D.
Sandhu JS.
Tetrahedron Lett.
2001,
42:
7883
<A NAME="RG00807ST-10C">10c</A>
Kumar HMS.
Anjaneyulu S.
Reddy EJ.
Yadav JS.
Tetrahedron Lett.
2000,
41:
9311
<A NAME="RG00807ST-11">11</A>
Merino P.
Mannucci V.
Tejero T.
Tetrahedron
2005,
61:
3335
Alkene 5 has been successfully used in ruthenium-catalyzed cross-metathesis reactions. For
representative examples, see:
<A NAME="RG00807ST-12A">12a</A>
Blackwell HE.
O’Leary DJ.
Chatterjee AK.
Washenfelder RA.
Bussmann DA.
Grubbs RH.
J. Am. Chem. Soc.
2000,
122:
58
<A NAME="RG00807ST-12B">12b</A>
Chatterjee AK.
Sanders DP.
Grubbs RH.
Org. Lett.
2002,
11:
1939
<A NAME="RG00807ST-12C">12c</A>
Chatterjee AK.
Toste FD.
Choi T.-L.
Grubbs RH.
Adv. Synth. Catal.
2002,
344:
634
<A NAME="RG00807ST-12D">12d</A>
Chatterjee AK.
Choi T.-L.
Sanders DP.
Grubbs RH.
J. Am. Chem. Soc.
2003,
125:
11360
<A NAME="RG00807ST-12E">12e</A>
Cluzeau J.
Capdevielle P.
Cossy J.
Tetrahedron Lett.
2005,
40:
6945
<A NAME="RG00807ST-13A">13a</A>
Kingsbury JS.
Harrity JPA.
Bonitatebus PJ.
Hoveyda AH.
J. Am. Chem. Soc.
1999,
121:
791
<A NAME="RG00807ST-13B">13b</A>
Garber SB.
Kingsbury JS.
Gray BL.
Hoveyda AH.
J. Am. Chem. Soc.
2000,
122:
8168
<A NAME="RG00807ST-13C">13c</A>
Grubbs RH.
Trnka TM. In Ruthenium in Organic Synthesis
Murahashi S.-I.
Wiley-VCH;
New York:
2004.
p.153-177
It has been recently described that the use of Lewis acids can prevent undesired coordination
of N-atom to the ruthenium carbene intermediate in metathesis reactions:
<A NAME="RG00807ST-14A">14a</A>
Yang Q.
Xiao W.-J.
Yu Z.
Org. Lett.
2005,
7:
871
<A NAME="RG00807ST-14B">14b</A> See also:
Fürstner A.
Langemann K.
J. Am. Chem. Soc.
1997,
119:
9130
<A NAME="RG00807ST-15">15</A>
Use of tert-butyldimethylsilyl chloride in the presence of several tertiary amines failed to
give the corresponding protected hydroxylamine.
<A NAME="RG00807ST-16">16</A>
Data for 6a: (90%). R
f
= 0.55 (hexane-EtOAc, 4:1); oil. 1H NMR (400 MHz, CDCl3, 25 °C, mixture of conformers): δ = 7.27-7.22 (m, 3 H), 7.21-7.13 (m, 4 H), 7.04-6.98
(m, 3 H), 5.61-5.55 (m, 1.6 H), 5.54-5.43 (m, 0.4 H), 4.58-4.50 (m, 0.4 H), 4.41-4.37
(m, 1.6 H), 4.20 (t, 1 H, J = 7.5 Hz), 2.79 (t, 2 H, J = 6.7 Hz), 2.06 (br, 0.6 H), 2.02 (br, 2.4 H), 0.3 (br, 9 H), -0.07 (br, 3 H), -0.31
(br, 0.6 H), -0.34 (br, 2.4 H). 13C NMR (100 MHz, CDCl3, 25 °C, selected signals for the major conformer): δ = 170.7, 152,5, 137.8, 133.3,
131.9, 127.9, 127.5, 127.4, 125.8, 123.7, 121.2, 74.3, 65.0, 32.9, 26.1, 21.0, 18.0,
-4.7, -5.5. Anal Calcd for C25H35NO3Si: C, 70.55; H, 8.29; N, 3.29. Found: C, 70.59; H, 8.45; N, 3.22.
<A NAME="RG00807ST-17">17</A>
Hyland C.
Tetrahedron
2005,
61:
3457
<A NAME="RG00807ST-18A">18a</A>
Lu X.
Zhang Q.
J. Am. Chem. Soc.
2000,
122:
7604
<A NAME="RG00807ST-18B">18b</A>
Lei A.
Liu G.
Lu X.
J. Org. Chem.
2002,
67:
974
<A NAME="RG00807ST-18C">18c</A>
Miyazawa M.
Hirose Y.
Narantsetseg M.
Yokoyama H.
Yamaguchi S.
Hirai Y.
Tetrahedron Lett.
2004,
45:
2883
<A NAME="RG00807ST-18D">18d</A>
Yokoyama H.
Otaya K.
Kobayashi H.
Miyazawa M.
Yamaguchi S.
Hirai Y.
Org. Lett.
2000,
2:
2427
<A NAME="RG00807ST-18E">18e</A>
Ferber B.
Prestat G.
Vogel S.
Madec D.
Poli G.
Synlett
2006,
2133
<A NAME="RG00807ST-19">19</A> We recently reported a related comparative study of Pd(0) vs. nonoxidative Pd(II)
catalysis for intramolecular allylic amination, see ref. 18e and:
Ferber B.
Lemaire S.
Mader MM.
Prestat G.
Poli G.
Tetrahedron Lett.
2003,
44:
4213
<A NAME="RG00807ST-20">20</A>
General Procedure for the Pd(0)-Mediated Intramolecular Allylic Alkylation
The proper homoallylhydroxylamine (1 mmol) and (if needed) NaH (60% dispersion in
a mineral oil, 1 mmol) were dissolved in DMF (20 mL) under an argon atmosphere and
the resulting mixture was cooled to 0 °C. In a separate flask, Pd(OAc)2 (5 mol%) and dppe (10 mol%) were mixed in DMF (5 mL) and stirred for ca 5 min. After
having carefully verified that the initially brown solution turned into a paler brown
suspension, the thus formed Pd(0) catalyst was added into the solution of hydroxylamine.
The resulting mixture was stirred at r.t. for 30 min, then heated at 80 °C for 3 h.
After cooling to r.t., the solution was poured into Et2O (125 mL) and H2O (50 mL) was added. The organic layer was separated and the aqueous layer was extracted
with Et2O. The combined organic extracts were washed with brine, dried over MgSO4, filtered and evaporated under reduced pressure to give a residue which was purified
by radial chromatography.
<A NAME="RG00807ST-21">21</A>
General Procedure for the Pd(II)-Mediated Intramolecular Allylic Alkylation
The corresponding homoallylhydroxylamine (1 mmol), Pd(OAc)2 (10 mol%) and lithium halide (5 mmol; if needed) were dissolved in DMF (20 mL) under
an argon atmosphere. The resulting mixture was stirred at r.t. for 30 min, then heated
at 80 °C for 3 h. After cooling to r.t., the solution was poured into Et2O (125 mL) and H2O (50 mL) was added. The organic layer was separated and the aqueous layer was extracted
with Et2O. The combined organic extracts were washed with brine, dried over MgSO4, filtered and evaporated under reduced pressure to give a residue which was purified
by radial chromatography.
<A NAME="RG00807ST-22">22</A>
The relative stereochemical assignment of compound 8a was based on ROESY experiments.
In situ preformation of Pd(0) from Pd(OAc)2/phosphine is amply documented. See for example:
<A NAME="RG00807ST-23A">23a</A>
Amatore C.
Carre E.
Jutand A.
M’Barke MA.
Organometallics
1995,
14:
1818
<A NAME="RG00807ST-23B">23b</A>
Amatore C.
Jutand A.
Thuilliez A.
Organometallics
2001,
20:
3241
<A NAME="RG00807ST-23C">23c</A>
Shimizu I.
Tsuji J.
J. Am. Chem. Soc.
1982,
104:
5844
<A NAME="RG00807ST-24">24</A>
Submission of compounds 9 and 11 to the same reaction conditions as in entries 3 and 6 of Table
[2]
, but in the absence of Pd(OAc)2, gave only starting material, thereby ruling out the possibility of a noncatalytic
cyclization passing through the corresponding allylic bromide.
<A NAME="RG00807ST-25">25</A>
Data for 10: R
f
= 0.36 (hexane-EtOAc, 4:1); [α]D
20 +92 (c 0.16, CHCl3). 1H NMR (400 MHz, CDCl3, 25 °C): δ = 7.45-7.40 (m, 2 H), 7.37-7.31 (m, 2 H), 7.30-7.24 (m, 1 H), 5.85 (ddd,
1 H, J = 17.2, 10.3, 7.1 Hz), 5.29 (d, 1 H, J = 17.2 Hz), 5.18 (d, 1 H, J = 10.3 Hz), 4.47 (dt, 1 H, J = 7.6, 7.1 Hz), 4.34 (d, 1 H, J = 14.0 Hz), 4.15 (dt, 1 H, J = 7.1, 6.5 Hz), 4.04 (dd, 1 H, J = 8.3, 6.5 Hz), 4.00 (d, 1 H, J = 14.0 Hz), 3.74 (dd, 1 H, J = 8.3, 7.1 Hz), 3.13 (dt, 1 H, J = 8.2, 7.1 Hz), 2.21-2.04 (m, 2 H), 1.44 (s, 3 H), 1.36 (s, 3 H). 13C NMR (100 MHz, CDCl3, 25 °C): δ = 137.6, 137.2, 129.2, 128.2, 127.2, 117.5, 109.8, 78.4, 77.2, 67.2, 66.9,
62.2, 37.5, 26.7, 25.4. Anal. Calcd for C17H23NO3: C, 70.56; H, 8.01; N, 4.84. Found: C, 70.47; H, 8.13; N, 4.76.
<A NAME="RG00807ST-26">26</A>
Data for 12: R
f
= 0.42 (hexane-EtOAc, 4:1); [α]D
20 +21 (c 1.38, CHCl3). 1H NMR (400 MHz, CDCl3, 25 °C): δ = 7.31-7.17 (m, 5 H), 5.89-5.79 (ddd, 1 H, J = 17.1, 10.2, 7.4 Hz), 5.20 (dt, 1 H, J = 17.1, 1.2 Hz), 5.10 (dt, 1 H, J = 10.2, 1.2 Hz), 4.50 (q, 1 H, J = 7.4 Hz), 4.04 (d, 1 H, J = 12.8 Hz), 3.98-3.92 (m, 2 H), 3.77 (d, 1 H, J = 12.8 Hz), 3.47-3.40 (m, 1 H), 3.16-3.10 (t, 1 H, J = 6.9 Hz), 2.48 (dddd, 1 H, J = 12.8, 9.2, 7.4, 1.6 Hz), 2.15 (ddd, 1 H, J = 12.8, 9.2, 7.4 Hz), 1.27 (s, 3 H), 1.24 (s, 3 H). 13C NMR (100 MHz, CDCl3, 25 °C): δ = 138.2, 137.0, 129.3, 128.5, 127.6, 117.3, 109.3, 80.4, 75.7, 68.0, 67.4,
63.6, 36.1, 26.8, 25.3. Anal. Calcd for C17H23NO3: C, 70.56; H, 8.01; N, 4.84. Found: C, 70.70; H, 7.88; N, 5.01.