Synlett 2007(6): 0974-0976  
DOI: 10.1055/s-2007-973861
LETTER
© Georg Thieme Verlag Stuttgart · New York

A New Versatile Synthesis of Esters from Grignard Reagents and Chloroformates

Daniela Bottalico, Vito Fiandanese, Giuseppe Marchese, Angela Punzi*
Dipartimento di Chimica, Università di Bari, Via Orabona 4, 70126 Bari, Italy
Fax: +39(080)5442075; e-Mail: punzi@chimica.uniba.it;
Further Information

Publication History

Received 11 December 2006
Publication Date:
26 March 2007 (online)

Abstract

Cross-coupling reactions of chloroformates with organocopper reagents, derived from Grignard reagents, cuprous bromide and lithium bromide, provide a rapid and straightforward method for the synthesis of esters.

    References and Notes

  • 1a Larock RC. Comprehensive Organic Transformations   2nd ed.:  Wiley-VCH; New York: 1999. 
  • 1b Smith BM. March J. Advanced Organic Chemistry   5th ed.:  J. Wiley and Sons; Chichester: 2001. 
  • 2 Babudri F. Fiandanese V. Marchese G. Punzi A. Tetrahedron Lett.  1995,  36:  7305 ; and references therein
  • 3 For a general review on the acylation of organometallic reagents, see: Dieter RK. Tetrahedron  1999,  55:  4177 
  • 4 Babudri F. Fiandanese V. Marchese G. Punzi A. Tetrahedron  1996,  52:  13513 
  • 5 Babudri F. Fiandanese V. Marchese G. Punzi A. Tetrahedron  1999,  55:  2431 
  • 6 Babudri F. Fiandanese V. Marchese G. Punzi A. J. Organomet. Chem.  2004,  689:  326 
  • 7a Werner T. Barrett AGM. J. Org. Chem.  2006,  71:  4302 
  • 7b Kashima C. Tsuruoka S. Mizuhara S. Tetrahedron  1998,  54:  14679 
  • 8 For an analogous reaction to prepare amides by cross-coupling of carbamoyl chloride with cyano-Gilman cuprates, see: Lemoucheux L. Seitz T. Rouden J. Lasne M.-C. Org. Lett.  2004,  6:  3703 
  • 9a Boudin A. Cerveau G. Chuit C. Corriu RJP. Reye C. Tetrahedron  1989,  45:  171 
  • 9b Manfred D, Egon U, and Beate J. inventors; East Ger. Patent DD  273249.  ; Chem. Abstr. 1991, 114, 130219
  • 9c Marchelli R. Hutzinger O. Heacock RA. Can. J. Chem.  1969,  47:  4375 
  • 9d Kasparek S. Heacock RA. Can. J. Chem.  1966,  44:  2805 
  • 9e Kurtman AI. Zh. Obshch. Khim.  1952,  22:  1385 
  • For scattered examples using others organometallic reagents, see:
  • 10a Zhang X. Qiu W. Burton DJ. Tetrahedron Lett.  1999,  40:  2681 
  • 10b Wiedenau P. Blechert S. Synth. Commun.  1997,  27:  2033 
  • 10c Gawley RE. Zhang Q. J. Org. Chem.  1995,  60:  5763 
  • 10d Taschner MJ. Rosen T. Heathcock CH. Org. Synth., Coll. Vol. VII  1990,  226 
  • 11 α-Diazocarbonyl compounds have been metalated using Grignard reagents and subsequently allowed to react with chloroformates to produce α-diazocarbonyl-β-ketoesters, see: Cuevas-Yanez E. Muchowski JM. Cruz-Almanza R. Tetrahedron Lett.  2004,  45:  2417 
  • 12 Maeda H. Takahashi K. Ohmori H. Tetrahedron  1998,  54:  12233 
13

Typical Experimental Procedure
A THF solution (10 mL) of anhyd LiBr (0.665 g, 7.66 mmol) was added at r.t., under nitrogen, to CuBr (0.549 g, 3.83 mmol). A freshly prepared THF solution of 2,6-dimethyl-phenylmagnesium bromide (4.7 mL, 3.83 mmol) and soon afterwards phenyl chloroformate (0.4 mL, 3.19 mmol) in THF (5 mL) were quickly added to the stirred solution of salts. The mixture was stirred at r.t. for 15 h, quenched with sat. aq NH4Cl and extracted with EtOAc. The organic extracts were dried over Na2SO4 and concentrated under vacuum. The residue was purified by column chromatography (silica gel, PE-EtOAc, 9.8:0.2) leading to phenyl 2,6-dimethylbenzoate 4c (0.707 g, 98% yield). The residual solid was crystallized from hexane giving white crystals of 4c, mp 50-51 °C. IR (KBr): νmax = 1744, 1600, 1587, 1491, 1466, 1261, 1244, 1182, 1105, 1053, 916, 764, 731, 690 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.48-7.41 (m, 2 H), 7.32-7.22 (m, 4 H), 7.10 (d, J = 7.2 Hz, 2 H), 2.48 (s, 6 H). 13C NMR (100.6 MHz, CDCl3): δ = 168.3, 150.6, 135.2, 132.9, 129.8, 129.6, 127.7, 126.1, 121.5, 19.9. MS: m/z (%) = 226 (<1) [M+], 133 (100), 105 (27), 77 (13), 65 (6), 51 (5). The side product phenyl 2,6-dimethylphenyl carbonate (<2%) was identified by the comparison with mass spectral data of an authentic sample independently synthesized: MS: m/z (%) = 242 (99) [M+], 198 (62), 197 (25), 183 (97), 165 (49), 155 (18), 148 (44), 121 (27), 120 (100), 105 (32), 103 (20), 94 (20), 92 (48), 91 (72), 79 (40), 78 (22), 77 (73), 51 (25).

14

At present, the formation of this side product is not yet clear and is subject to further investigations.